Squares of real conjugacy classes in finite groups

被引:0
作者
A. Beltrán
M. J. Felipe
C. Melchor
机构
[1] Universidad Jaume I,Departamento de Matemáticas
[2] Universidad Politécnica de Valencia,Instituto Universitario de Matemática Pura y Aplicada
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2018年 / 197卷
关键词
Finite groups; Conjugacy classes; Product of classes; Characters; Real conjugacy classes; 20E45; 20C15; 20D15;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if a finite group G contains a conjugacy class K whose square is of the form 1∪D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \cup D$$\end{document}, where D is a conjugacy class of G, then ⟨K⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle K\rangle $$\end{document} is a solvable proper normal subgroup of G and we completely determine its structure. We also obtain the structure of those groups in which the assumption above is true for all non-central conjugacy classes and when every conjugacy class satisfies that its square is the union of all central conjugacy classes except at most one.
引用
收藏
页码:317 / 328
页数:11
相关论文
共 11 条
[1]  
Arad Z(1987)An analogy between products of two conjugacy classes and products of two irreducible characters Proc. Edinb. Math. Soc. 30 7-22
[2]  
Fisman E(2005)Indices of elements and normal structure of finite groups J. Algebra 283 564-583
[3]  
Berkovich Y(1998)Nearly odd-order and nearly real finite group Comm. in Algebra 26 2041-2064
[4]  
Kazarin L(1966)Central elements in core-free groups J. Algebra 4 403-420
[5]  
Chillag D(2016)Squaring a conjugacy class and cosets of normal subgroups Proc. Am. Math. Soc. 144 1939-1945
[6]  
Mann A(2011)Products of conjugacy classes in simple groups Quaest. Math. 34 433-439
[7]  
Glauberman G(undefined)undefined undefined undefined undefined-undefined
[8]  
Guralnick R(undefined)undefined undefined undefined undefined-undefined
[9]  
Navarro G(undefined)undefined undefined undefined undefined-undefined
[10]  
Moori J(undefined)undefined undefined undefined undefined-undefined