On cyclicity in discontinuous piecewise linear near-Hamiltonian differential systems with three zones having a saddle in the central one

被引:0
作者
Claudio Pessoa
Ronisio Ribeiro
Douglas Novaes
Márcio Gouveia
Rodrigo Euzébio
机构
[1] Universidade Estadual Paulista (UNESP),Instituto de Biociências Letras e Ciências Exatas
[2] Universidade Estadual de Campinas (UNICAMP),Departamento de Matemática
[3] Universidade Federal de Goiâs (UFG),Instituto de Matemática e Estatística
[4] Universidade Federal de Itajubá (UNIFEI),Instituto de Matemática e Computação
来源
Nonlinear Dynamics | 2023年 / 111卷
关键词
Limit cycle; Piecewise Hamiltonian differential system; Melnikov function; Periodic annulus; 34C07; 34A36; 37G15; 34C25;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain lower bounds for the maximum number of limit cycles bifurcating from periodic annuli of discontinuous planar piecewise linear Hamiltonian differential systems with three zones separated by two parallel straight lines, assuming that the linear differential subsystem in the region between the two straight lines, called of central subsystem, has a saddle at a point equidistant from these lines. (Obviously, the other subsystems have saddles or centers.) We prove that at least six limit cycles bifurcate from the periodic annuli of these kind of piecewise Hamiltonian differential systems, by linear perturbations. Normal forms and Melnikov functions, defined in two and three zones, are the main techniques used in the proof of the results.
引用
收藏
页码:21153 / 21175
页数:22
相关论文
共 87 条
[1]  
Braga DC(2013)Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane Nonlin. Dyn. 73 1283-1288
[2]  
Mello LF(2013)Piecewise linear perturbations of a linear center Discrete Contin. Dyn. Syst. 33 3915-3936
[3]  
Buzzi CA(2023)Uniform upper bound for the number of limit cycles of planar piecewise linear differential systems with two zones separated by a straight line Appl. Math. Lett. 137 1101-1129
[4]  
Pessoa C(2021)A new simple proof for Lum–Chua’s conjecture Nonlinear Anal. Hybrid Syst. 40 1323-1336
[5]  
Torregrosa J(2008)Neuronal networks with gap junctions: a study of piecewise linear planar neuron models SIAM Appl. Dyn. Syst. 7 885-902
[6]  
Carmona V(2011)Nonlinear dynamics of memristor oscillators IEEE Trans. Circuits Syst. I. Regul. Pap. 58 97-466
[7]  
Fernández-Sánchez F(1990)Canonical realization of Chua’s circuit family IEEE Trans. Circuits Syst. 37 445-2097
[8]  
Novaes DD(2017)Note on limit cycles for m-piecewise discontinuous polynomial Liénard differential equations Z. Angew. Math. Phys. 68 205018-211
[9]  
Carmona V(1961)Impulses and physiological states in theoretical models of nerve membrane Biophys. J. 1 2073-253
[10]  
Fernández-Sánchez F(2020)Limit cycles in planar piecewise linear Hamiltonian systems with three zones without equilibrium points Int. J. Bifur. Chaos Appl. Sci. Eng. 30 181-479