The Percolation Transition in the Zero-Temperature Domany Model

被引:0
作者
Federico Camia
Charles M. Newman
机构
[1] Forschungsinstitut für Mathematik,ETH
[2] EURANDOM,undefined
来源
Journal of Statistical Physics | 2004年 / 114卷
关键词
dependent percolation; critical exponents; universality; cellular automaton; zero-temperature dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze a deterministic cellular automaton σ⋅=(σn:n≥0) corresponding to the zero-temperature case of Domany's stochastic Ising ferromagnet on the hexagonal lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{N}$$ \end{document}. The state space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{S}_\mathbb{H} = \left\{ { - 1, + 1} \right\}^\mathbb{H}$$ \end{document} consists of assignments of −1 or +1 to each site of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{H}$$ \end{document} and the initial state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sigma ^0 = \left\{ {\sigma _{^x }^0 } \right\}_{x \in \mathbb{H}}$$ \end{document} is chosen randomly with P(σ0x=+1)=p∈[0,1]. The sites of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{H}$$ \end{document} are partitioned in two sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{B}$$ \end{document} so that all the neighbors of a site x in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} belong to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{B}$$ \end{document} and vice versa, and the discrete time dynamics is such that the σ⋅x's with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${x \in \mathcal{A}}$$ \end{document} (respectively, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{B}$$ \end{document}) are updated simultaneously at odd (resp., even) times, making σ⋅x agree with the majority of its three neighbors. In ref. 1 it was proved that there is a percolation transition at p=1/2 in the percolation models defined by σn, for all times n∈[1,∞]. In this paper, we study the nature of that transition and prove that the critical exponents β, ν, and η of the dependent percolation models defined by σn, n∈[1,∞], have the same values as for standard two-dimensional independent site percolation (on the triangular lattice).
引用
收藏
页码:1199 / 1210
页数:11
相关论文
共 34 条
  • [1] Domany E.(1984)Exact results for two-and three-dimensional Ising and Potts models Phys. Rev. Lett. 52 871-874
  • [2] Howard C. D.(2003)The percolation transition for the zero-temperature stochastic Ising model on the hexagonal lattice J. Stat. Phys. 111 57-72
  • [3] Newman C. M.(2002)Cardy's formula for some dependent percolation models Bull. Brazilian Math. Soc. 33 147-156
  • [4] Camia F.(1992)Critical percolation in finite geometries J. Phys. A 25 L201-L206
  • [5] Newman C. M.(2001)Critical percolation in the plane: Conformal invariance, Cardy’;s formula, scaling limits C. R. Acad. Sci. Paris 333 239-244
  • [6] Sidoravicius V.(2000)Scaling limits of loop-erased random walks and uniform spanning trees Israel J. Math. 118 221-288
  • [7] Cardy J. L.(2001)Critical exponents for two-dimensional percolation Math. Rev. Lett. 8 279-744
  • [8] Smirnov S.(2002)Clusters and recurrence in the two-dimensional zero-temperature stochastic Ising model Ann. Appl. Probab. 12 565-580
  • [9] Schramm O.(2002)Stretched exponential fixation in stochastic Ising models at zero temperature Commun. Math. Phys. 228 495-518
  • [10] Smirnov S.(2000)Zero-temperature dynamics of ± J spin glasses and related models Commun. Math. Phys. 214 373-387