Entanglement entropy in integrable field theories with line defects. Part I. Topological defect

被引:0
作者
Yunfeng Jiang
机构
[1] Institut für Theoretische Physik,
[2] ETH Zürich,undefined
来源
Journal of High Energy Physics | / 2017卷
关键词
Bethe Ansatz; Field Theories in Lower Dimensions; Integrable Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper and a companion one [1], we study the effect of integrable line defects on entanglement entropy in massive integrable field theories in 1+1 dimensions. The current paper focuses on topological defects that are purely transmissive. Using the form factor bootstrap method, we show that topological defects do not affect the the entanglement entropy in the UV limit and modify slightly the leading exponential correction in the IR. This conclusion holds for both unitary and non-unitary field theories. In contrast, non-topological defects affect the entanglement entropy more significantly both in UV and IR limit and will be studied in the companion paper.
引用
收藏
相关论文
共 99 条
[1]  
Islam R(2015)Measuring entanglement entropy in a quantum many-body system Nature 528 77-undefined
[2]  
Holzhey C(1994)Geometric and renormalized entropy in conformal field theory Nucl. Phys. B 424 443-undefined
[3]  
Larsen F(2006)Holographic derivation of entanglement entropy from AdS/CFT Phys. Rev. Lett. 96 181602-undefined
[4]  
Wilczek F(2006)Aspects of Holographic Entanglement Entropy JHEP 08 045-undefined
[5]  
Ryu S(2008)Form factors of branch-point twist fields in quantum integrable models and entanglement entropy J. Statist. Phys. 130 129-undefined
[6]  
Takayanagi T(2008)Bi-partite entanglement entropy in integrable models with backscattering J. Phys. A 41 275203-undefined
[7]  
Ryu S(2009)Bi-partite entanglement entropy in massive QFT with a boundary: The Ising model J. Statist. Phys. 134 105-undefined
[8]  
Takayanagi T(2009)Bi-partite entanglement entropy in massive 1+1-dimensional quantum field theories J. Phys. A 42 504006-undefined
[9]  
Cardy JL(2015)Entanglement Entropy of Non-Unitary Integrable Quantum Field Theory Nucl. Phys. B 896 835-undefined
[10]  
Castro-Alvaredo OA(1992)Form-factors in completely integrable models of quantum field theory Adv. Ser. Math. Phys. 14 1-undefined