Approximation by local L-splines corresponding to a linear differential operator of the second order

被引:0
作者
Shevaldin V.T. [1 ]
机构
[1] Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Ekaterinburg, 620219
基金
俄罗斯基础研究基金会;
关键词
STEKLOV Institute; Real Line; Characteristic Polynomial; Periodic Case; Elementary Transformation;
D O I
10.1134/S0081543806060150
中图分类号
学科分类号
摘要
For the class of functions W∞L2 = {f : f′ ∈ AC, ∥L2(D)f∥∞ ≤ 1}, where L 2(D) is a linear differential operator of the second order whose characteristic polynomial has only real roots, we construct a noninterpolating linear positive method of exponential spline approximation possessing extremal and smoothing properties and locally inheriting the monotonicity of the initial data (the values of a function f ∈ W∞L2 at the points of a uniform grid). The approximation error is calculated exactly for this class of functions in the uniform metric. © 2006 Pleiades Publishing, Inc.
引用
收藏
页码:S178 / S197
页数:19
相关论文
共 15 条
[1]  
Subbotin Y.N., Zh. Vychisl. Mat. Mat. Fiz, 33, 7, (1993)
[2]  
Math, Math. Phys, 33, 7, (1993)
[3]  
Kostousov K.V., Shevaldin V.T., Proc. Steklov Inst. Math, SUPPL. 1, (2004)
[4]  
Kostousov K.V., Shevaldin V.T., Mat. Zametki, 77, 3, (2005)
[5]  
Notes, 77, 3, (2005)
[6]  
Schumaker L.L., Spline Functions: Basic Theory, (1981)
[7]  
Kvasov B.I., Isogeometric Approximation by Splines, (1998)
[8]  
Sharma A., Cimbalario I., Mat. Zametki, 21, 2, (1977)
[9]  
Notes, 21, 2, (1977)
[10]  
Krein M.G., Dokl. Akad. Nauk SSSR, 18, 4-5, (1938)