Stability and error analysis of an implicit Milstein finite difference scheme for a two-dimensional Zakai SPDE

被引:0
作者
Christoph Reisinger
Zhenru Wang
机构
[1] University of Oxford,Mathematical Institute
来源
BIT Numerical Mathematics | 2019年 / 59卷
关键词
Stochastic partial differential equations; Milstein scheme; Stochastic finite differences; Splitting schemes; Mean-square stability; -convergence; 65T50; 60H15; 65N06; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
This article proposes an implicit finite difference scheme for a two-dimensional parabolic stochastic partial differential equation of Zakai type. The scheme is based on a Milstein approximation to the stochastic integral and an alternating direction implicit discretisation of the elliptic term. Mean-square stability and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}-convergence of first order in time and second order in space are proven by Fourier analysis, in the presence of Dirac initial data. Numerical tests confirm these findings empirically.
引用
收藏
页码:987 / 1029
页数:42
相关论文
共 70 条
  • [1] Barth A(2012)Milstein approximation for advection–diffusion equations driven by multiplicative noncontinuous martingale noises Appl. Math. Optim. 66 387-413
  • [2] Lang A(2013) and almost sure convergence of a Milstein scheme for stochastic partial differential equations Stoch. Process. Appl. 123 1563-1587
  • [3] Barth A(2013)Multilevel Monte Carlo method for parabolic stochastic partial differential equations BIT Numer. Math. 53 3-27
  • [4] Lang A(2010)Towards a systematic linear stability analysis of numerical methods for systems of stochastic differential equations SIAM J. Numer. Anal. 48 298-321
  • [5] Barth A(2011)Stochastic evolution equations in portfolio credit modelling SIAM J. Financ. Math. 2 627-664
  • [6] Lang A(2007)Sharp error estimates for discretizations of the 1D convection-diffusion equation with Dirac initial data IMA J. Numer. Anal. 27 406-425
  • [7] Schwab C(1988)An alternating-direction implicit scheme for parabolic equations with mixed derivatives Comput. Math. Appl. 16 341-350
  • [8] Buckwar E(2003)Exact rates of convergeance for a branching particle approximation to the solution of the Zakai equation Ann. Probab. 31 693-718
  • [9] Kelly C(1999)A particle approximation of the solution of the Kushner–Stratonovitch equation Probab. Theory Relat. Fields 115 549-578
  • [10] Bush N(2010)Approximate McKean–Vlasov representations for a class of SPDEs Stoch. Int. J. Probab. Stoch. Process. 82 53-68