Limit Cycles of a Class of Cubic Liénard Equations

被引:0
作者
Huatao Jin
Shuliang Shui
机构
[1] Zhejiang Normal University,College of Mathematics, Physics and Information Engineering
来源
Qualitative Theory of Dynamical Systems | 2011年 / 10卷
关键词
Liénard equations; Limit cycles; Hopf bifurcations; 34C07; 34C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a class of polynomial Liénard systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{ll}&\dot{x}=y-(a_{1}x+a_{2}x^{2}+a_{3}x^{3}),\\&\dot{y}=-(b_{1}x+b_{2}x^2+b_{3}x^3), \end{array}$$\end{document}is considered. Some conditions of the existence, non-existence and uniqueness of limit cycles are obtained by using Filippov transformations and Zhang’s theorem. We obtain that the above system has at most one limit cycle surrounding the origin if a1a3 < 0 or b2 = 0. And, one example is given to illustrate that the system can have three limit cycles.
引用
收藏
页码:317 / 326
页数:9
相关论文
共 18 条
[1]  
Blows T.R.(1984)The number of small-amplitude limit cycles of Li Proc. Camb. Phil. Soc. 95 359-366
[2]  
Lloyd N.G.(1988)nard equations Proc. R. Soc. Lond. A 418 199-208
[3]  
Lloyd N.G.(1999)Small-amplitude limit cycles of certain Li Ann. Differ. Equ. 15 113-126
[4]  
Lynch S.(1999)nard systems Nonlinearity 12 1099-1112
[5]  
Han M.-A.(1999)Lyapunov constants and Hopf cyclicity of Liénard systems J. Nanjing Univ. 18 123-126
[6]  
Christopher C.(1977)Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces Lect. Notes Math. 597 335-357
[7]  
Lynch S.(1986)Unique of Limit cycle of the system J. Yunnan Coll. 2 94-99
[8]  
Wang X.(1994)On Liénard equation Ann. Diff. Equ. 10 307-337
[9]  
Lins A.(1986)Limit cycles of cubic Liénard equation Math. Ann. 7A 1-7
[10]  
de Melo W.(1999)Limit cycles of cubic Liénard equation (II) J. Jinzhou Normal Coll. 20 1-6