Analysis on a finite volume element method for Stokes problems

被引:0
作者
Rui H.-X. [1 ]
机构
[1] School of Mathematics and Systems Science, Shandong University
基金
中国国家自然科学基金;
关键词
Finite volume elements; Numerical analysis; Stokes problem;
D O I
10.1007/s10255-005-0243-x
中图分类号
学科分类号
摘要
Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general triangulation we prove the equivalence of the finite volume element method and a saddle-point problem, the inf-sup condition and the uniqueness of the approximation solution. We also give the optimal order H1 norm error estimate. For two widely used dual meshes we give the L2 norm error estimates, which is optimal in one case and quasi-optimal in another case. Finally we give a numerical example. © Springer-Verlag 2005.
引用
收藏
页码:359 / 372
页数:13
相关论文
共 17 条
  • [1] Adams R., Sobolev Spaces, (1975)
  • [2] Babuska I., Aziz A.Z., The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, (1972)
  • [3] Bank R.E., Rose D.J., Some error estimates for the box method, SIAM J. Numer. Anal., 24, pp. 777-787, (1987)
  • [4] Bernardi C., Raugel G., Analysis of some finite elements for the Stokes problem, Math. Comp., 44, pp. 71-79, (1985)
  • [5] Cai Z.Q., On the finite volume element, Numer. Math., 28, pp. 392-402, (1991)
  • [6] Cai Z.Q., Mandel J., McCormick, The finite volume element method for diffusion equations on general triangulations, SIAM J. Numer. Anal., 28, pp. 713-735, (1991)
  • [7] Cai Z.Q., McCormick, On the accuracy of the finite volume element method for diffusion equations on composite grids, SIAM J. Numer. Anal., 27, pp. 635-655, (1990)
  • [8] Chou S., Analysis and Convergence of a covolume method for generalized Stokes problem, Math. Comp., 66, pp. 85-104, (1997)
  • [9] Chou S.H., Li Q., Error estimates in L<sup>2</sup>, H<sup>1</sup> and L<sup>∞</sup> in covolume methods for elliptic and parabolic problems: Aunified approach, Math. Comp., 69, pp. 103-120, (1999)
  • [10] Ciarlet P.G., The Finite Element Method for Elliptic Problems, (1978)