Positive almost Dunford–Pettis operators and their duality

被引:0
作者
Belmesnaoui Aqzzouz
Aziz Elbour
Anthony W. Wickstead
机构
[1] Université Mohammed V-Souissi,Département d’Economie, Faculté des Sciences Economiques, Juridiques et Sociales
[2] Université Ibn Tofail,Département de Mathématiques, Faculté des Sciences
[3] Queens University Belfast,Pure Mathematics Research Centre
来源
Positivity | 2011年 / 15卷
关键词
Almost Dunford–Pettis operator; Order continuous norm; Positive Schur property; KB-space; 46A40; 46B40; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
We study some properties of almost Dunford–Pettis operators and we characterize pairs of Banach lattices for which the adjoint of an almost Dunford–Pettis operator inherits the same property and look at conditions under which an operator is almost Dunford–Pettis whenever its adjoint is.
引用
收藏
页码:185 / 197
页数:12
相关论文
共 12 条
[1]  
Aqzzouz B.(2009)Some generalizations on positive Dunford–Pettis operators Results Math. 54 207-218
[2]  
Bourass K.(1979)Compact operators in Banach lattices Israel J. Math. 34 287-320
[3]  
Elbour A.(1975)Weak sequential convergence in the dual of a Banach space does not imply norm convergence Ark. Mat. 13 79-89
[4]  
Dodds P.G.(1975)* sequential convergence Israel J. Math. 22 266-272
[5]  
Fremlin D.H.(2007)An isomorphic version of Nakano’s characterization of Positivity 11 609-615
[6]  
Josefson B.(1989)(Σ) Rev. Mat. Univ. Complut. Madrid 2 217-224
[7]  
Nissenzweig A.(1993)Some characterizations of Banach lattices with the Schur property Confer. Sem. Mat. Univ. Bari 249 25-1080
[8]  
Wickstead A.W.(1993)Banach lattices with properties of the Schur type—a survey Math. Japon. 38 1077-236
[9]  
Wnuk W.(1994)Remarks on J R Holub’s paper concerning Dunford–Pettis operators Atti Sem. Mat. Fis. Univ. Modena 42 227-undefined
[10]  
Wnuk W.(undefined)Banach lattices with the weak Dunford–Pettis property undefined undefined undefined-undefined