Optimal partition problems for the fractional Laplacian

被引:0
作者
Antonella Ritorto
机构
[1] FCEN – Universidad de Buenos Aires and IMAS – CONICET,Departamento de Matemática
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2018年 / 197卷
关键词
Fractional partial equations; Fractional capacities; Optimal partition; 35R11; 49Q10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1,…,Am):Ai∈As,Ai∩Aj=∅fori≠j},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \min \{F_s(A_1,\ldots ,A_m):A_i \in {\mathcal {A}}_s, \, A_i\cap A_j =\emptyset \text{ for } i\ne j\}, \end{aligned}$$\end{document}where Fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_s$$\end{document} is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_s$$\end{document} is the class of admissible domains and the condition Ai∩Aj=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_i\cap A_j =\emptyset $$\end{document} is understood in the sense of Gagliardo s-capacity, where 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}, studied in [5].
引用
收藏
页码:501 / 516
页数:15
相关论文
共 26 条
  • [21] Bi-parametric optimal partition invariancy sensitivity analysis in linear optimization
    Alireza Ghaffari-Hadigheh
    Habib Ghaffari-Hadigheh
    Tamás Terlaky
    Central European Journal of Operations Research, 2008, 16 : 215 - 238
  • [22] Bi-parametric optimal partition invariancy sensitivity analysis in linear optimization
    Ghaffari-Hadigheh, Alireza
    Ghaffari-Hadigheh, Habib
    Terlaky, Tamas
    CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2008, 16 (02) : 215 - 238
  • [23] Searching for an Optimal Partition of Incomplete Data with Application in Modeling Energy Efficiency of Public Buildings
    Scitovski, Rudolf
    Susac, Marijana Zekic
    Has, Adela
    CROATIAN OPERATIONAL RESEARCH REVIEW, 2018, 9 (02) : 255 - 268
  • [24] A fuzzy hybrid hierarchical clustering method with a new criterion able to find the optimal partition
    Devillez, A
    Billaudel, P
    Lecolier, GV
    FUZZY SETS AND SYSTEMS, 2002, 128 (03) : 323 - 338
  • [25] Limit Configurations of Schrodinger Systems Versus Optimal Partition for the Principal Eigenvalue of Elliptic Systems
    Luo, Haijun
    Zhang, Zhitao
    ADVANCED NONLINEAR STUDIES, 2019, 19 (04) : 693 - 715
  • [26] A mathematical solution of optimal partition of production loops for subsea wells in the layout of daisy chains
    Wang, Yingying
    Wang, Deguo
    Duan, Menglan
    Xu, Minghua
    Cao, Jing
    Estefen, Segen F.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2014, 228 (03) : 211 - 219