Populus tremuloides photosynthesis and crown architecture in response to elevated CO2 and soil N availability

被引:37
|
作者
Kubiske M.E. [1 ,4 ]
Pregitzer K.S. [1 ]
Mikan C.J. [2 ]
Zak D.R. [2 ]
Maziasz J.L. [1 ]
Teeri J.A. [3 ]
机构
[1] School of Forestry and Wood Products, Michigan Technological University, Houghton
[2] Sch. of Nat. Rsrc. and Environment, University of Michigan, Ann Arbor
[3] Univ. of Michigan Biological Station, University of Michigan, Ann Arbor
[4] Department of Forestry, Box 9681, Mississippi State
关键词
Carbon allocation; Elevated CO[!sub]2[!/sub; Nitrogen; Photosynthesis; Populus tremuloides;
D O I
10.1007/PL00008813
中图分类号
学科分类号
摘要
We tested the hypothesis that elevated CO2 would stimulate proportionally higher photosynthesis in the lower crown of Populus trees due to less N retranslocation, compared to tree crowns in ambient CO2. Such a response could increase belowground C allocation, particularly in trees with an indeterminate growth pattern such as Populus tremuloides. Rooted cuttings of P. tremuloides were grown in ambient and twice ambient (elevated) CO2 and in low and high soil N availability (89 ± 7 and 333 ± 16 ng N g-1 day -1 net mineralization, respectively) for 95 days using open-top chambers and open-bottom root boxes. Elevated CO2 resulted in significantly higher maximum leaf photosynthesis (A(max)) at both soil N levels. A(max) was higher at high N than at low N soil in elevated, but not ambient CO2. Photosynthetic N use efficiency was higher at elevated than ambient CO2 in both soil types. Elevated CO2 resulted in proportionally higher whole leaf A in the lower three-quarters to one-half of the crown for both soil types. At elevated CO2 and high N availability, lower crown leaves had significantly lower ratios of carboxylation capacity to electron transport capacity (V(c)(max)/J(max)) than at ambient CO2 and/or low N availability. From the top to the bottom of the tree crowns, V(c)(max)/J(max) increased in ambient CO2, but it decreased in elevated CO2 indicating a greater relative investment of N into light harvesting for the lower crown. Only the mid-crown leaves at both N levels exhibited photosynthetic down regulation to elevated CO2. Stem biomass segments (consisting of three nodes and internodes) were compared to the total A(leaf) for each segment. This analysis indicated that increased A(leaf) at elevated CO2 did not result in a proportional increase in local stem segment mass, suggesting that C allocation to sinks other than the local stem segment increased disproportionally. Since C allocated to roots in young Populus trees is primarily assimilated by leaves in the lower crown, the results of this study suggest a mechanism by which C allocation to roots in young trees may increase in elevated CO2.
引用
收藏
页码:328 / 336
页数:8
相关论文
共 50 条
  • [31] Photosynthesis and water use efficiency of Populus euphratica in response to changing groundwater depth and CO2 concentration
    Yapeng Chen
    Yaning Chen
    Changchun Xu
    Weihong Li
    Environmental Earth Sciences, 2011, 62 : 119 - 125
  • [32] EFFECTS OF NITROGEN SUPPLY ON THE ACCLIMATION OF PHOTOSYNTHESIS TO ELEVATED CO2
    PETTERSSON, R
    MCDONALD, AJS
    PHOTOSYNTHESIS RESEARCH, 1994, 39 (03) : 389 - 400
  • [33] Photosynthesis, Growth, and Yield of Citrus at Elevated Atmospheric CO2
    Vu, Joseph C. V.
    JOURNAL OF CROP IMPROVEMENT, 2005, 13 (1-2) : 361 - 376
  • [34] Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants
    Xu, Zhenzhu
    Jiang, Yanling
    Zhou, Guangsheng
    FRONTIERS IN PLANT SCIENCE, 2015, 6
  • [35] Response of photosynthesis, growth, carbon isotope discrimination and osmotic tolerance of rice to elevated CO2
    Peng, CL
    Duan, J
    Lin, GZ
    Chen, YZ
    Peng, SL
    ACTA BOTANICA SINICA, 2002, 44 (01): : 76 - 81
  • [36] THE EFFECT OF GROWTH AT ELEVATED CO2 CONCENTRATIONS ON PHOTOSYNTHESIS IN WHEAT
    MCKEE, IF
    WOODWARD, FI
    PLANT CELL AND ENVIRONMENT, 1994, 17 (07) : 853 - 859
  • [37] Global patterns and controls of the soil microbial biomass response to elevated CO2
    Li, Shucheng
    Xie, Shu
    Zhang, Shijie
    Miao, Shilin
    Tang, Shiming
    Chen, Hongyang
    Zhan, Qiuwen
    GEODERMA, 2022, 428
  • [38] Residue incorporation and N fertilization affect the response of soil nematodes to the elevated CO2 in a Chinese wheat field
    Li, Qi
    Xu, Chonggang
    Liang, Wenju
    Zhong, Shuang
    Zheng, Xunhua
    Zhu, Jianguo
    SOIL BIOLOGY & BIOCHEMISTRY, 2009, 41 (07) : 1497 - 1503
  • [39] Soil phosphorus availability is a driver of the responses of maize (Zea mays) to elevated CO2 concentration and arbuscular mycorrhizal colonisation
    Watts-Williams, Stephanie J.
    Smith, F. Andrew
    Jakobsen, Iver
    SYMBIOSIS, 2019, 77 (01) : 73 - 82
  • [40] Down-regulation of photosynthesis and its relationship with changes in leaf N allocation and N availability after long-term exposure to elevated CO2 concentration
    Byeon, Siyeon
    Song, Wookyung
    Park, Minjee
    Kim, Sukyung
    Kim, Seohyun
    Lee, HoonTaek
    Jeon, Jihyeon
    Kim, Kunhyo
    Lee, Minsu
    Lim, Hyemin
    Han, Sim-Hee
    Oh, ChangYoung
    Kim, Hyun Seok
    JOURNAL OF PLANT PHYSIOLOGY, 2021, 265