A new approach to hypergeometric transformation formulas

被引:0
作者
Noriyuki Otsubo
机构
[1] Chiba University,Department of Mathematics and Informatics
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Hypergeometric functions; Basic hypergeometric functions; Transformation formulas; 33C05; 33D15;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for q-hypergeometric functions is also studied.
引用
收藏
页码:793 / 816
页数:23
相关论文
共 23 条
[1]  
Berndt BC(1995)Ramanujan’s theories of elliptic functions to alternative bases Trans. Am. Math. Soc. 347 4163-4244
[2]  
Bhargava S(1991)A cubic counterpart of Jacobi’s identity and the AGM Trans. Am. Math. Soc. 323 691-701
[3]  
Garvan FG(1994)Some cubic modular identities of Ramanujan Trans. Am. Math. Soc. 343 35-47
[4]  
Borwein JM(1998)On Ramanujan’s cubic transformation formula for Math. Proc. Camb. Philos. Soc. 124 193-204
[5]  
Borwein PB(2009)Inversion formulas for elliptic functions Proc. Lond. Math. Soc. 99 461-483
[6]  
Borwein JM(1881)Sur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique Ann. Sci. Éc. Norm. Sup. 10 3-142
[7]  
Borwein PB(1847)Untersuchungen über die Reihe J. Reine Angew. Math. 34 285-328
[8]  
Garvan FG(1910)-Difference equations Am. J. Math. 32 305-314
[9]  
Chan HH(2009)The common limit of a quadruple sequence and the hypergeometric function Nagoya Math. J. 195 113-124
[10]  
Cooper S(2007) of three variables J. Number Theory 124 123-141