Invertibility of Bergman Toeplitz operators with harmonic polynomial symbols

被引:0
作者
Nanxing Guan
Xianfeng Zhao
机构
[1] Chuxiong Normal University,School of Mathematics and Statistics
[2] Chongqing University,College of Mathematics and Statistics
来源
Science China Mathematics | 2020年 / 63卷
关键词
Bergman space; Toeplitz operator; harmonic polynomial symbol; invertibility; 47B35; 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be an analytic polynomial on the unit disk. We obtain a necessary and sufficient condition for Toeplitz operators with the symbol z¯+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline z + p$$\end{document} to be invertible on the Bergman space when all coefficients of p are real numbers. Furthermore, we establish several necessary and sufficient, easy-to-check conditions for Toeplitz operators with the symbol z¯+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline z + p$$\end{document} to be invertible on the Bergman space when some coefficients of p are complex numbers.
引用
收藏
页码:965 / 978
页数:13
相关论文
共 50 条
  • [31] Algebraic Properties of Toeplitz Operators on the Harmonic Bergman Space
    Jingyu YANG
    Yufeng LU
    Xiaoying WANG
    JournalofMathematicalResearchwithApplications, 2016, 36 (04) : 495 - 504
  • [32] COMMUTANTS OF TOEPLITZ OPERATORS WITH POLYNOMIAL SYMBOLS ON THE DIRICHLET SPACE
    Chen, Yong
    Lee, Young Joo
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 533 - 542
  • [33] Commutants of Toeplitz Operators with Separately Radial Polynomial Symbols
    Appuhamy, Amila
    Le, Trieu
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (01) : 1 - 12
  • [34] Ranks of commutators of Toeplitz operators on the harmonic Bergman space
    Chen, Yong
    Koo, Hyungwoon
    Lee, Young Joo
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 75 (01) : 31 - 38
  • [35] Commutants of analytic Toeplitz operators on the harmonic Bergman space
    Choe, BR
    Lee, YJ
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 50 (04) : 559 - 564
  • [36] Commuting dual Toeplitz operators on the harmonic Bergman space
    Yang JingYu
    Lu YuFeng
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) : 1461 - 1472
  • [37] Commuting dual Toeplitz operators on the harmonic Bergman space
    YANG JingYu
    LU YuFeng
    Science China(Mathematics), 2015, 58 (07) : 1461 - 1472
  • [38] On C*-Algebras of Toeplitz Operators on the Harmonic Bergman Space
    Maribel Loaiza
    Carmen Lozano
    Integral Equations and Operator Theory, 2013, 76 : 105 - 130
  • [39] Ranks of commutators of Toeplitz operators on the harmonic Bergman space
    Yong Chen
    Hyungwoon Koo
    Young Joo Lee
    Integral Equations and Operator Theory, 2013, 75 : 31 - 38
  • [40] Toeplitz operators on the Bergman space
    Vasilevski, N
    FACTORIZATION, SINGULAR OPERATORS AND RELATED PROBLEMS, PROCEEDINGS, 2003, : 315 - 333