Numerical Study of Jet–Target Interaction: Influence of Dielectric Permittivity on the Electric Field Experienced by the Target

被引:0
作者
Pedro Viegas
Anne Bourdon
机构
[1] Université Paris-Saclay,LPP, CNRS, École Polytechnique, Sorbonne Université, Université Paris
[2] DIFFER - Dutch Institute for Fundamental Energy Research,Sud
来源
Plasma Chemistry and Plasma Processing | 2020年 / 40卷
关键词
Plasma target interaction; Plasma dielectric interaction; Plasma jet; Electric field; Surface charges;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a study of the influence of dielectric permittivity on the interaction between a positive pulsed He plasma jet and a 0.5 mm-thick dielectric target, using a validated two-dimensional numerical model. Six different targets are studied: five targets at floating potential with relative permittivities ϵr=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r =$$\end{document} 1, 4, 20, 56 and 80; and one grounded target of permittivity ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}. The temporal evolution of the charging of the target and of the electric field inside the target are described, during the pulse of applied voltage and after its fall. It is found that the order of magnitude of the electric field inside the dielectric targets is the same for all floating targets with ϵr≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r \ge 4$$\end{document}. For all these targets, during the pulse of applied voltage, the electric field perpendicular to the target and averaged through the target thickness, at the point of discharge impact, is between 1 and 5 kV cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. For the two remaining targets (ϵr=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=1$$\end{document} and grounded target with ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}), the field is significantly higher than for all the other floating targets.
引用
收藏
页码:661 / 683
页数:22
相关论文
共 50 条
[41]   WATER THERMODYNAMIC BEHAVIOR UNDER INFLUENCE OF ELECTRIC FIELD: A MOLECULAR DYNAMICS STUDY [J].
Porterfield, Malcolm ;
Borca-Tasciuc, Diana .
PROCEEDINGS OF ASME 2022 HEAT TRANSFER SUMMER CONFERENCE, HT2022, 2022,
[42]   Study of the influence of the electric field on membrane flux of a new type of membrane bioreactor [J].
Chen, Jun-Ping ;
Yang, Chang-Zhu ;
Zhou, Jia-Hua ;
Wang, Xiao-Ying .
CHEMICAL ENGINEERING JOURNAL, 2007, 128 (2-3) :177-180
[43]   Theoretical and Experimental Study of High Conductive Fluid and Electric Field Interaction inside a Microchannel [J].
Vafaie, R. Hadjiaghaie ;
Moradpour, A. .
2017 25TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2017, :308-312
[44]   The effect of external electric field and metal impurities on the interaction of HF and boraphene: a computational study [J].
Arabieh, Masoud ;
Zahedi, Mansour .
JOURNAL OF MOLECULAR MODELING, 2021, 27 (02)
[45]   The effect of external electric field and metal impurities on the interaction of HF and boraphene: a computational study [J].
Masoud Arabieh ;
Mansour Zahedi .
Journal of Molecular Modeling, 2021, 27
[46]   Influence of the electric field on flash-sintered (Zr plus Ta) co-doped TiO2 colossal permittivity ceramics [J].
Peng, Pai ;
Chen, Caohong ;
Cui, Bing ;
Li, Jiamao ;
Xu, Dong ;
Tang, Bin .
CERAMICS INTERNATIONAL, 2022, 48 (05) :6016-6023
[47]   Numerical study on the time evolutions of the electric field in helium plasma jets with positive and negative polarities [J].
Viegas, Pedro ;
Pechereau, Francois ;
Bourdon, Anne .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (02)
[48]   Numerical study of supercooled water droplet impacting on cold superhydrophobic surface under electric field [J].
Zhou, Xin ;
Wang, Hong ;
Zhu, Xun ;
Chen, Rong ;
Liao, Qiang .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 218
[49]   Influence of Humidity on the Electric Field, Filtration Efficiency, and Flow Velocity in Electret Filter Media: Direct Numerical Simulation [J].
Stoll, Daniel ;
Antonyuk, Sergiy .
ATMOSPHERE, 2025, 16 (07)
[50]   Experimental study of the influence of electric field on parameters of kerosene-air mixture combustion [J].
Kolodyazhnyi D.Y. ;
Nagornyi V.S. .
Russian Aeronautics, 2015, 58 (04) :438-442