Numerical Study of Jet–Target Interaction: Influence of Dielectric Permittivity on the Electric Field Experienced by the Target

被引:0
作者
Pedro Viegas
Anne Bourdon
机构
[1] Université Paris-Saclay,LPP, CNRS, École Polytechnique, Sorbonne Université, Université Paris
[2] DIFFER - Dutch Institute for Fundamental Energy Research,Sud
来源
Plasma Chemistry and Plasma Processing | 2020年 / 40卷
关键词
Plasma target interaction; Plasma dielectric interaction; Plasma jet; Electric field; Surface charges;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a study of the influence of dielectric permittivity on the interaction between a positive pulsed He plasma jet and a 0.5 mm-thick dielectric target, using a validated two-dimensional numerical model. Six different targets are studied: five targets at floating potential with relative permittivities ϵr=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r =$$\end{document} 1, 4, 20, 56 and 80; and one grounded target of permittivity ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}. The temporal evolution of the charging of the target and of the electric field inside the target are described, during the pulse of applied voltage and after its fall. It is found that the order of magnitude of the electric field inside the dielectric targets is the same for all floating targets with ϵr≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r \ge 4$$\end{document}. For all these targets, during the pulse of applied voltage, the electric field perpendicular to the target and averaged through the target thickness, at the point of discharge impact, is between 1 and 5 kV cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. For the two remaining targets (ϵr=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=1$$\end{document} and grounded target with ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}), the field is significantly higher than for all the other floating targets.
引用
收藏
页码:661 / 683
页数:22
相关论文
共 50 条
[31]   The effect of liquid target on a nonthermal plasma jet-imaging, electric fields, visualization of gas flow and optical emission spectroscopy [J].
Kovacevic, Vesna V. ;
Sretenovic, Goran B. ;
Slikboer, Elmar ;
Guaitella, Olivier ;
Sobota, Ana ;
Kuraica, Milorad M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (06)
[32]   Numerical approach to controlling a moving jet's vibration in an electrospinning system: An auxiliary electrode and uniform electric field [J].
Chen, Rouxi ;
Wu, Yuke ;
Fan, Jie ;
Wang, Liang ;
Su, Zhibo ;
Qin, Liming ;
Liang, Libing ;
Li, Yantao ;
Cheng, Jianhua ;
Liu, Yong .
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2019, 38 (3-4) :1687-1698
[33]   Enhanced laser-induced breakdown spectroscopy by pre-heated target and electric field: comprehensive review [J].
Abdelazim, Ahmed ;
Aboulfotouh, Abdelnaser ;
Omar, Magdy ;
Fikry, Mohamed .
JOURNAL OF OPTICS-INDIA, 2025,
[34]   Study of dielectric parameters and the internal electric field prediction in an individual wheat grain particle [J].
Vidal Castrejon, Amauri ;
Rodriguez Gonzalez, Mario Vladimir ;
Ponomaryova, Iryna .
2015 12TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2015), 2015,
[35]   STUDY OF THE INFLUENCE OF AN EXTERNAL ELECTRIC FIELD ON THE MOBILITY OF PARAFFINIC CRUDE OILS [J].
Chaves Guerrero, Arlex ;
Rey Vargas, John Edinson ;
Pinzon Amorocho, Jerson Alexis ;
Ariza Leon, Emiliano ;
Jimenez Leiva, Cristian Camilo .
FUENTES EL REVENTON ENERGETICO, 2013, 11 (02) :79-85
[36]   Simulation Study on the Influence of Electric Field on Contamination Accumulation Characteristics of Insulator [J].
Mei, Hongwei ;
Yang, Jiaxin ;
Wang, Tingting ;
Zhang, Fuzeng ;
Liao, Yifan ;
Li, Lanxin ;
Wang, Liming .
2019 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL MATERIALS AND POWER EQUIPMENT (ICEMPE 2019), 2019, :518-521
[37]   Influence of ring electrodes covered with dielectric layer on the characteristics of atmospheric pressure plasma jet and its interaction with polymer surface [J].
Wang, Tao ;
Wang, Jiahao ;
Wang, Shengquan ;
Wang, Xin ;
Yang, Weizhi ;
Li, Meng ;
Shi, Liping .
APPLIED SURFACE SCIENCE, 2022, 585
[38]   Development and test of a multi-target transmission X-ray tube based on the electron deflection in an electric field [J].
Hei, Daqian ;
Jin, Limin ;
Jia, Wenbao ;
Zhao, Lei ;
Sun, Aiyun ;
Xiong, Genchao .
VACUUM, 2021, 193
[39]   Numerical modelling to study the effect of DC electric field on a laminar ethylene diffusion flame [J].
Sayed-Kassem, Ahmad ;
Elorf, Abdallah ;
Gillon, Pascale ;
Idir, Mahmoud ;
Sarh, Brahim ;
Gilard, Virginie .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 122
[40]   WATER THERMODYNAMIC BEHAVIOR UNDER INFLUENCE OF ELECTRIC FIELD: A MOLECULAR DYNAMICS STUDY [J].
Porterfield, Malcolm ;
Borca-Tasciuc, Diana .
PROCEEDINGS OF ASME 2022 HEAT TRANSFER SUMMER CONFERENCE, HT2022, 2022,