Numerical Study of Jet–Target Interaction: Influence of Dielectric Permittivity on the Electric Field Experienced by the Target

被引:0
作者
Pedro Viegas
Anne Bourdon
机构
[1] Université Paris-Saclay,LPP, CNRS, École Polytechnique, Sorbonne Université, Université Paris
[2] DIFFER - Dutch Institute for Fundamental Energy Research,Sud
来源
Plasma Chemistry and Plasma Processing | 2020年 / 40卷
关键词
Plasma target interaction; Plasma dielectric interaction; Plasma jet; Electric field; Surface charges;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a study of the influence of dielectric permittivity on the interaction between a positive pulsed He plasma jet and a 0.5 mm-thick dielectric target, using a validated two-dimensional numerical model. Six different targets are studied: five targets at floating potential with relative permittivities ϵr=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r =$$\end{document} 1, 4, 20, 56 and 80; and one grounded target of permittivity ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}. The temporal evolution of the charging of the target and of the electric field inside the target are described, during the pulse of applied voltage and after its fall. It is found that the order of magnitude of the electric field inside the dielectric targets is the same for all floating targets with ϵr≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r \ge 4$$\end{document}. For all these targets, during the pulse of applied voltage, the electric field perpendicular to the target and averaged through the target thickness, at the point of discharge impact, is between 1 and 5 kV cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. For the two remaining targets (ϵr=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=1$$\end{document} and grounded target with ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}), the field is significantly higher than for all the other floating targets.
引用
收藏
页码:661 / 683
页数:22
相关论文
共 50 条
  • [21] Numerical simulation of the wave breaking process on the surface of a dielectric liquid in a tangential electric field
    Kochurin, Evgeny A.
    2019 IEEE 20TH INTERNATIONAL CONFERENCE ON DIELECTRIC LIQUIDS (ICDL), 2019,
  • [22] Numerical Analysis of the Electric Field in and Near a Bubble Located in One Dielectric in Series with Another
    Zeng, Chuang
    Zheng, Xiaoquan
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2015, 22 (02) : 747 - 751
  • [23] Silicone rubber membranes: Influence of the electric field of medium frequency on the dielectric properties
    Cirtina, G.
    Balasoiu, M.
    Anitas, E. M.
    Bortun, C. M.
    Ionescu, C.
    Craciun, L.
    Averis, L. M.
    Bica, I.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2015, 17 (11-12): : 1891 - 1895
  • [24] Simulation study on the influence of an electric field on water evaporation
    Okuno, Yoshishige
    Minagawa, Mie
    Matsumoto, Hidetoshi
    Tanioka, Akihiko
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2009, 904 (1-3): : 83 - 90
  • [25] Incubation temperature and hemoglobin dielectric of chicken embryos incubated under the influence of electric field
    Shafey, T. M.
    Al-Batshan, H. A.
    Shalaby, M. I.
    Ghannam, M. M.
    ELECTROMAGNETIC BIOLOGY AND MEDICINE, 2006, 25 (02) : 87 - 96
  • [26] Influence of electric field on the ice-coating process of insulators with a different dielectric surface
    Yang, Zhongyi
    Jiang, Xingliang
    Huang, Yafei
    Hu, Jianlin
    Han, Xingbo
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2020, 14 (05) : 585 - 592
  • [27] LIQUID DIELECTRIC FILMS IN A NONUNIFORM ELECTRIC FIELD: DYNAMICS, PERFORATION, AND INFLUENCE OF ELECTRODE WETTABILITY
    Medvedev, D. A.
    Kupershtokh, A. L.
    INTERFACIAL PHENOMENA AND HEAT TRANSFER, 2022, 10 (02) : 41 - 51
  • [28] Investigation of electric field distribution on dielectric exposed to DC-pulsed He plasma jet with shielding gas
    Liu, Guoqiang
    Xia, Yang
    Shang, Kefeng
    Liu, Dongping
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (02)
  • [30] The influence of incompatibility and dielectric contrast on the electric field-induced orientation of lamellar block copolymers
    Böker, A
    Schmidt, K
    Knoll, A
    Zettl, H
    Hänsel, H
    Urban, V
    Abetz, V
    Krausch, G
    POLYMER, 2006, 47 (03) : 849 - 857