Sup-norm-closable bilinear forms and Lagrangians

被引:0
作者
Michael Hinz
机构
[1] Universität Bielefeld,Fakultät für Mathematik
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2016年 / 195卷
关键词
Bilinear forms; Dirichlet forms; Measures; Self-adjoint operators; Algebras of functions; Vector lattices of functions; 28A25; 46A40; 46E35; 46J99; 47A07; 47D07;
D O I
暂无
中图分类号
学科分类号
摘要
We consider symmetric nonnegative definite bilinear forms on algebras of bounded real-valued functions and investigate closability with respect to the supremum norm. In particular, any Dirichlet form gives rise to a sup-norm closable bilinear form. Under mild conditions, a sup-norm closable bilinear form admits finitely additive energy measures. If, in addition, there exists a (countably additive) energy-dominant measure, then a sup-norm closable bilinear form can be turned into a Dirichlet form admitting a carré du champ. Moreover, we can always transfer the bilinear form to an isometrically isomorphic algebra of bounded functions on the Gelfand spectrum, where these measures exist. Our results complement a former closability study of Mokobodzki for the locally compact and separable case.
引用
收藏
页码:1021 / 1054
页数:33
相关论文
共 76 条
[1]  
Albeverio S(1977)Dirichlet forms and Markovian semigroups on Comm. Math. Phys. 56 83-94
[2]  
Hoegh-Krohn R(1989)-algebras Probab. Theory Rel. Fields 83 405-434
[3]  
Albeverio S(1990)Classical Dirichlet forms on topological vector spaces—construction of an associated diffusion process J. Funct. Anal. 88 395-436
[4]  
Röckner M(1975)Classical Dirichlet forms on topological vector spaces—closability and a Cameron–Martin formula Ann. Inst. Fourier 25 1-10
[5]  
Albeverio S(1975)Sur la représentation des formes de Dirichlet Ann. Inst. Fourier 25 11-25
[6]  
Röckner M(1956)On the representation of Dirichlet forms Ann. Inst. Fourier 6 125-185
[7]  
Allain G(2012)Functional spaces and functional completion J. Funct. Anal. 263 3707-3740
[8]  
Andersson L-E(2013)Harnack inequalities in infinite dimensions Trans. Am. Math. Soc. 365 4313-4350
[9]  
Aronszajn N(1999)Quasi-invariance for heat kernel measures on sub-Riemannian infinite-dimensional Heisenberg groups J. Funct. Anal. 166 197-217
[10]  
Smith KT(1958)What is not in the domain of the Laplacian on a Sierpinski gasket type fractal Acta Math. 99 203-224