Steklov regularization and trajectory methods for univariate global optimization

被引:0
作者
Orhan Arıkan
Regina S. Burachik
C. Yalçın Kaya
机构
[1] Bilkent University,Electrical and Electronics Engineering Department
[2] University of South Australia,School of Information Technology and Mathematical Sciences
来源
Journal of Global Optimization | 2020年 / 76卷
关键词
Global optimization; Mean filter; Steklov smoothing; Steklov regularization; Scale–shift invariance; Trajectory methods;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new regularization technique, using what we refer to as the Steklov regularization function, and apply this technique to devise an algorithm that computes a global minimizer of univariate coercive functions. First, we show that the Steklov regularization convexifies a given univariate coercive function. Then, by using the regularization parameter as the independent variable, a trajectory is constructed on the surface generated by the Steklov function. For monic quartic polynomials, we prove that this trajectory does generate a global minimizer. In the process, we derive some properties of quartic polynomials. Comparisons are made with a previous approach which uses a quadratic regularization function. We carry out numerical experiments to illustrate the working of the new method on polynomials of various degree as well as a non-polynomial function.
引用
收藏
页码:91 / 120
页数:29
相关论文
共 50 条
  • [41] Newton’s Method for Global Free Flight Trajectory Optimization
    Borndörfer R.
    Danecker F.
    Weiser M.
    Operations Research Forum, 4 (3)
  • [42] REGULARIZATION METHODS FOR SDP RELAXATIONS IN LARGE-SCALE POLYNOMIAL OPTIMIZATION
    Nie, Jiawang
    Wang, Li
    SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (02) : 408 - 428
  • [43] New interval methods for constrained global optimization
    Markót, MC
    Fernández, J
    Casado, LG
    Csendes, T
    MATHEMATICAL PROGRAMMING, 2006, 106 (02) : 287 - 318
  • [44] Global interval methods for local nonsmooth optimization
    Görges, C
    Ratschek, H
    JOURNAL OF GLOBAL OPTIMIZATION, 1999, 14 (02) : 157 - 179
  • [45] Lipschitz global optimization methods in control problems
    D. E. Kvasov
    Ya. D. Sergeyev
    Automation and Remote Control, 2013, 74 : 1435 - 1448
  • [46] CUSTOMIZING METHODS FOR GLOBAL OPTIMIZATION - A GEOMETRIC VIEWPOINT
    BARITOMPA, W
    JOURNAL OF GLOBAL OPTIMIZATION, 1993, 3 (02) : 193 - 212
  • [47] The convergence speed of interval methods for global optimization
    Csallner, AE
    Csendes, T
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (4-5) : 173 - 178
  • [48] Imbedding and cutting methods for global optimization and their applications
    Bulatov, Valerian
    OPTIMIZATION, 2009, 58 (07) : 763 - 770
  • [49] New interval methods for constrained global optimization
    M.Cs. Markót
    J. Fernández
    L.G. Casado
    T. Csendes
    Mathematical Programming, 2006, 106 : 287 - 318
  • [50] GLOBAL OPTIMIZATION METHODS FOR ENGINEERING APPLICATIONS - A REVIEW
    ARORA, JS
    ELWAKEIL, OA
    CHAHANDE, AI
    HSIEH, CC
    STRUCTURAL OPTIMIZATION, 1995, 9 (3-4): : 137 - 159