Asymptotic behavior of a quasilinear parabolic–elliptic–elliptic chemotaxis system with logistic source

被引:0
作者
Dan Li
Zhongping Li
机构
[1] China West Normal University,College of Mathematics and Information
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Chemotaxis system; Indirect signal; Logistic source; Global boundedness; Asymptotic behavior; 35K55; 35Q92; 35Q35; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following quasilinear parabolic–elliptic–elliptic chemotaxis system with indirect signal production and logistic source ut=∇·(D(u)∇u)-∇·(S(u)∇v)+μ(u-uγ),x∈Ω,t>0,0=Δv-v+w,x∈Ω,t>0,0=Δw-w+u,x∈Ω,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}&u_t=\nabla \cdot (D(u)\nabla u) -\nabla \cdot (S(u)\nabla v)+\mu (u-u^\gamma ) ,&\qquad \quad x\in \Omega ,\,t>0,\\&0=\Delta v- v+ w,&\qquad \quad x\in \Omega ,\,t>0,\\&0=\Delta w- w+ u,&\qquad \quad x\in \Omega ,\,t>0 \end{aligned} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn(n≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Omega \subset \mathbb {R}^n(n\ge 1)$$\end{document}, where μ>0,γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu>0, \gamma >1$$\end{document}, and D,S∈C2([0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D, S\in C^2\,([0,\infty ))$$\end{document} fulfilling D(s)≥a0(s+1)α,|S(s)|≤b0s(s+1)β-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(s)\ge a_0(s+1)^{\alpha },\, |S(s)|\le b_0s(s+1)^{\beta -1}$$\end{document} for all s≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 0$$\end{document} with a0,b0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_0, b_0>0$$\end{document} and α,β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta \in \mathbb {R} $$\end{document} are constants. The purpose of this paper is to prove that if β≤γ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \le \gamma -1$$\end{document}, the nonnegative classical solution (u, v, w) is global in time and bounded. In addition, if μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0 $$\end{document} is sufficiently large, the globally bounded solution (u, v, w) satisfies ‖u(·,t)-1‖L∞(Ω)+‖v(·,t)-1‖L∞(Ω)+‖w(·,t)-1‖L∞(Ω)→0ast→∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert u(\cdot ,t)-1\Vert _{L^\infty (\Omega )}+\Vert v(\cdot ,t)-1\Vert _{L^\infty (\Omega )}+\Vert w(\cdot ,t)-1\Vert _{L^\infty (\Omega )} \rightarrow 0 \quad as \quad t\rightarrow \infty . \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条
[41]   Asymptotic behavior in a quasilinear chemotaxis-growth system with indirect signal production [J].
Zhang, Wenji ;
Liu, Suying ;
Niu, Pengcheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (10)
[42]   Existence and Asymptotic Behavior for the Ground State of Quasilinear Elliptic Equations [J].
Zeng, Xiaoyu ;
Zhang, Yimin .
ADVANCED NONLINEAR STUDIES, 2018, 18 (04) :725-744
[43]   Global boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with logistic source [J].
Zhang, Yinle ;
Zheng, Sining .
APPLIED MATHEMATICS LETTERS, 2016, 52 :15-20
[44]   Large time behavior of solution to a fully parabolic chemotaxis system with singular sensitivity and logistic source [J].
He, Qiurong ;
Zhao, Jie ;
Xiao, Min .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 69
[45]   Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source [J].
Cao, Xinru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :181-188
[46]   Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source [J].
Wang, Liangchen ;
Mu, Chunlai ;
Hu, Xuegang ;
Tian, Ya .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (08) :3000-3016
[47]   Global existence and asymptotic behavior to a chemotaxis-consumption system with singular sensitivity and logistic source [J].
Zhao, Xiangdong ;
Zheng, Sining .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 42 :120-139
[48]   Asymptotic behavior of solutions to two-dimensional chemotaxis system with logistic source and singular sensitivity [J].
Cao, Junhong ;
Wang, Wei ;
Yu, Hao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) :382-392
[49]   A quasilinear attraction-repulsion chemotaxis system with logistic source [J].
Cai, Yuanyuan ;
Li, Zhongping .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 70
[50]   Asymptotic Behavior of Solutions to a Logistic Chemotaxis System with Singular Sensitivity [J].
Wanjuan DU .
JournalofMathematicalResearchwithApplications, 2021, 41 (05) :473-480