Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in L2

被引:0
作者
M. Sh. Shabozov
G. A. Yusupov
机构
[1] Institute of Mathematics of the Academy of Sciences of the Republic of Tajikistan,
[2] Tajik National University,undefined
来源
Siberian Mathematical Journal | 2011年 / 52卷
关键词
space of square integrable functions; best approximation; extremal characteristic; generalized continuity modulus; width;
D O I
暂无
中图分类号
学科分类号
摘要
We find the exact values of the n-widths for the classes of periodic differentiable functions in L2[0, 2π] satisfying the constraint \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int\limits_0^h {t\tilde \Omega _m^{1/m} (f^{(r)} ;t)dt \leqslant \Phi (h)} ,$\end{document} where h > 0, m ∈ ℕ, r ∈ ℤ+, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde \Omega _m $\end{document}(f(r); t) is the generalized mth order continuity modulus of the derivative f(r) ∈ L2[0, 2π], while Φ(t) is an arbitrary increasing function such that Φ(0) = 0.
引用
收藏
页码:1124 / 1136
页数:12
相关论文
共 24 条
[1]  
Chernykh N. I.(1967)The best approximation of periodic functions by trigonometric polynomials in Math. Notes 2 803-808
[2]  
Taikov L. V.(1976)Inequalities containing best approximations and the modulus of continuity of functions in Math. Notes 20 797-800
[3]  
Yudin V. A.(1980)Diophantine approximations in Soviet Math., Dokl. 21 400-403
[4]  
Babenko A. G.(1986) extremal problems Math. Notes 39 355-363
[5]  
Ligun A. A.(1988)The exact constant in the Jackson inequality in Math. Notes 43 435-443
[6]  
Babenko A. G.(1999)Exact inequalities of Jackson type for periodic functions in space Math. Notes 65 777-781
[7]  
Chernykh N. I.(1999)The Jackson-Stechkin inequality in Math. Notes 66 404-408
[8]  
Shevaldin V. T.(1999) with a trigonometric modulus of continuity Math. Notes 65 689-693
[9]  
Vakarchuk S. B.(2004)-functionals and exact values of Math. Notes 76 749-757
[10]  
Esmaganbetov M. G.(2005)-widths of some classes in Math. Notes 78 735-739