Linear Equations Systems of Real and Complex Semi-Quaternions

被引:0
|
作者
Yasemin Alagöz
Gözde Özyurt
机构
[1] Yildiz Technical University,Department of Mathematics
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2020年 / 44卷
关键词
Real semi-quaternion; Complex semi-quaternion; Real semi-quaternion matrix; Complex semi-quaternion matrix; Linear real semi-quaternionic equations system; Linear complex semi-quaternionic equations system; 15B33; 15A06;
D O I
暂无
中图分类号
学科分类号
摘要
In this work firstly real semi-quaternion matrices and their properties are examined. Then, 2n×2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n\times 2n$$\end{document} complex adjoint matrix and 4n×4n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4n\times 4n$$\end{document} real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the 2n×2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n\times 2n$$\end{document} complex adjoint matrix and the 4n×4n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4n\times 4n$$\end{document} real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their 2n×2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n\times 2n$$\end{document} real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this 2n×2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n\times 2n$$\end{document} matrix representation. Finally, for a complex semi-quaternion matrix 4n×4n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4n\times 4n$$\end{document} complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined.
引用
收藏
页码:1483 / 1493
页数:10
相关论文
共 50 条
  • [1] Linear Equations Systems of Real and Complex Semi-Quaternions
    Alagoz, Yasemin
    Ozyurt, Gozde
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (05): : 1483 - 1493
  • [2] INVOLUTIONS IN SEMI-QUATERNIONS
    Bekar, Murat
    Yayli, Yusuf
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2016, 41 : 1 - 16
  • [3] Involutions in split semi-quaternions
    Bekar, Murat
    Yayli, Yusuf
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (12) : 4491 - 4505
  • [4] Linear equations in quaternions
    Janovska, Drahoslava
    Opfer, Gerhard
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 945 - +
  • [5] HANDBOOK SERIES LINEAR ALGEBRA - SOLUTION OF REAL AND COMPLEX SYSTEMS OF LINEAR EQUATIONS
    BOWDLER, HJ
    MARTIN, RS
    PETERS, G
    WILKINSO.JH
    NUMERISCHE MATHEMATIK, 1966, 8 (03) : 217 - &
  • [6] A new method for solving real and complex fuzzy systems of linear equations
    Diptiranjan Behera
    S. Chakraverty
    Computational Mathematics and Modeling, 2012, 23 (4) : 507 - 518
  • [7] Real and Hyperbolic Matrices of Split Semi Quaternions
    Alagoz, Yasemin
    Ozyurt, Gozde
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (03)
  • [8] Real and Hyperbolic Matrices of Split Semi Quaternions
    Yasemin Alagöz
    Gözde Özyurt
    Advances in Applied Clifford Algebras, 2019, 29
  • [9] Real Matrix Representations for the Complex Quaternions
    Cristina Flaut
    Vitalii Shpakivskyi
    Advances in Applied Clifford Algebras, 2013, 23 : 657 - 671
  • [10] Real Matrix Representations for the Complex Quaternions
    Flaut, Cristina
    Shpakivskyi, Vitalii
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (03) : 657 - 671