Limits of Relaxed Dirichlet Problems Involving a non Symmetric Dirichlet Form

被引:0
|
作者
Mataloni S. [1 ]
Tchou N.A. [2 ]
机构
[1] Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Via della Ricerca Scientifica
[2] Université de Rennes 1, Beaulieu
关键词
Open Subset; Dirichlet Problem; Symmetric Case; Radon Measure; Dirichlet Form;
D O I
10.1007/BF02505948
中图分类号
学科分类号
摘要
In this paper we study the convergence of solutions of a sequence of relaxed Dirichlet problems relative to non-symmetric Dirichlet forms. The techniques rely on the study of the behaviour of the solutions of the adjoint problems, as suggested by G. Dal Maso and A. Garroni in [16] in the case of linear elliptic operators of second order with bounded measurable coefficients. In particular we prove a compactness result due to Mosco [31] in the symmetric case.
引用
收藏
页码:65 / 93
页数:28
相关论文
共 50 条
  • [31] Asymptotic Dirichlet problems in warped products
    Jean-Baptiste Casteras
    Esko Heinonen
    Ilkka Holopainen
    Jorge Lira
    Mathematische Zeitschrift, 2020, 295 : 211 - 248
  • [32] On some formulations of the Cauchy and Dirichlet problems
    Tersenov, S. A.
    MATHEMATICAL NOTES, 2010, 87 (1-2) : 146 - 150
  • [33] Brownian motion and Dirichlet problems at infinity
    Hsu, EP
    ANNALS OF PROBABILITY, 2003, 31 (03): : 1305 - 1319
  • [34] Some Dirichlet problems with bad coercivity
    Boccardo, L
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (02) : 319 - 329
  • [35] FILIPPOV SOLUTIONS OF VECTOR DIRICHLET PROBLEMS
    Machu, Hana
    MATHEMATICA SLOVACA, 2020, 70 (02) : 401 - 416
  • [36] New competition phenomena in Dirichlet problems
    Kristaly, Alexandru
    Morosanu, Gheorghe
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (06): : 555 - 570
  • [37] Asymptotic Dirichlet problems in warped products
    Casteras, Jean-Baptiste
    Heinonen, Esko
    Holopainen, Ilkka
    Lira, Jorge
    MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (1-2) : 211 - 248
  • [38] On some formulations of the Cauchy and Dirichlet problems
    S. A. Tersenov
    Mathematical Notes, 2010, 87 : 146 - 150
  • [39] When and how an error yields a Dirichlet form
    Bouleau, Nicolas
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 240 (02) : 445 - 494
  • [40] A trace theorem for the Dirichlet form on the Sierpinski gasket
    Alf Jonsson
    Mathematische Zeitschrift, 2005, 250 : 599 - 609