Comparative transcriptome and tolerance mechanism analysis in the two contrasting wheat (Triticum aestivum L.) cultivars in response to drought and salinity stresses

被引:0
作者
Mengesha T. Dugasa
Xue Feng
Nian-Hong Wang
Junmei Wang
Feibo Wu
机构
[1] Zijingang Campus,Department of Agronomy, College of Agriculture and Biotechnology
[2] Zhejiang University,The Institute of Crops and Nuclear Technology Utilization
[3] Zhejiang Academy of Agricultural Sciences,Jiangsu Co
[4] Yangzhou University,Innovation Center for Modern Production Technology of Grain Crops
来源
Plant Growth Regulation | 2021年 / 94卷
关键词
Drought; Salinity; Tolerance; Transcriptome; Wheat (; L.);
D O I
暂无
中图分类号
学科分类号
摘要
Drought and salinity are the two important and commonly co-occurring abiotic stresses affecting plant growth and productivity worldwide. Here, we compared the genome-wide transcriptome in the two contrasting wheat cultivars (JM22, drought/salt tolerant; YM20, salt sensitive) in response to drought (10% soil moisture) and salinity (100 mM NaCl) stresses. A total of 295 and 94 genes were characterized as drought and salinity responsive according to their different expression profile between JM22 and YM20 in response to drought and salinity stresses, respectively. Of these, 193 and 67 genes, up-regulated in JM22 while down-regulated/unchanged in YM20 and 103 and 27 genes unchanged in JM22 but down-regulated in YM20, under drought and salinity, respectively. Functional enrichment analysis showed that, JM22 recorded higher expression for genes related to ROS detoxification and defense, in response to drought (e.g. phenolic glucosidemalonyltransferase and anthocyanidin 5,3-O-glucosyltransferase-like) and salinity (flavonoid 3′-monooxygenase and heat shock 70 kDa protein). Meanwhile, genes encoding phytohormone and signal transduction (e.g. cytokinin, LRR receptor kinase and LRK14) were prominently up-regulated in JM22 under drought. F-type H+/Na+-transporting ATPase subunit beta, and Ca2+ signal transduction sensors and key regulatory genes responsible, including zinc finger, NAC and WRKY were showed higher expression in JM22 in salinity stress. Further analysis of genotypic difference in transcriptome in response to drought and salinity, we identified 10 DEGs, annotated to cellular process, metabolic process, osmotic regulation, and MAPK signaling pathway, being co-identified as drought and salinity tolerance associated DEGs. Our results suggest that the co-expression of these genes was important for tolerating and adapting to drought and salinity stresses in JM22. This finding increases our knowledge and understanding of the wheat drought and salinity tolerance mechanism and provides molecular bases in breeding potential under drought and salinity stresses.
引用
收藏
页码:101 / 114
页数:13
相关论文
共 50 条
  • [31] Agronomic Performance of Seeds of Some Bread Wheat (Triticum aestivum L.) Cultivars Exposed to Drought Stress Triticum aestivum
    Balkan, Alpay
    JOURNAL OF TEKIRDAG AGRICULTURE FACULTY-TEKIRDAG ZIRAAT FAKULTESI DERGISI, 2019, 16 (01): : 82 - 91
  • [32] Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance
    Jitendra Kumar
    Samatha Gunapati
    Shahryar F. Kianian
    Sudhir P. Singh
    Protoplasma, 2018, 255 : 1487 - 1504
  • [33] Genetic variability of salinity tolerance in spring wheat (Triticum aestivum L.)
    Bhutta, Waqas Manzoor
    Hanif, Muhammad
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2010, 60 (03) : 256 - 261
  • [34] Contribution of Ascorbate and Glutathione in Endobacteria Bacillus subtilis-Mediated Drought Tolerance in Two Triticum aestivum L. Genotypes Contrasting in Drought Sensitivity
    Maslennikova, Dilara
    Lastochkina, Oksana
    PLANTS-BASEL, 2021, 10 (12):
  • [35] Genetic Characterization and Agronomic Evaluation of Drought Tolerance in Ten Egyptian Wheat (Triticum aestivum L.) Cultivars
    Emam, Mohamed A.
    Abd EL-Mageed, Amal M.
    Niedbala, Gniewko
    Sabrey, Samah A.
    Fouad, Ahmed S.
    Kapiel, Tarek
    Piekutowska, Magdalena
    Mahmoud, Soad A.
    AGRONOMY-BASEL, 2022, 12 (05):
  • [36] Inheritance of Cell Membrane Stability and Yield Components Under Drought and Salinity Stress in Bread Wheat (Triticum aestivum L.)
    Naqi, Sameena
    Khan, Aamir Hamid
    Rana, Rashid Mehmood
    Hamza, Muhammad Imran
    Kiedrzynski, Marcin
    Tahir, Muhammad Naveed
    Ahmad, Munir
    Saud, Shah
    Hassan, Shah
    Fahad, Shah
    JOURNAL OF PLANT GROWTH REGULATION, 2024,
  • [38] De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.)
    Zongli Chu
    Junying Chen
    Junyan Sun
    Zhongdong Dong
    Xia Yang
    Ying Wang
    Haixia Xu
    Xiaoke Zhang
    Feng Chen
    Dangqun Cui
    BMC Plant Biology, 17
  • [39] Transcriptome Analysis Reveals Complex Molecular Mechanisms Underlying UV Tolerance of Wheat (Triticum aestivum, L.)
    Wang, Fang
    Xu, Zhibin
    Fan, Xiaoli
    Zhou, Qiang
    Cao, Jun
    Ji, Guangsi
    Jing, Shuzhong
    Feng, Bo
    Wang, Tao
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (02) : 563 - 577
  • [40] Comprehensive Transcriptome Analysis of Responses during Cold Stress in Wheat (Triticum aestivum L.)
    Li, Lei
    Han, Chenglin
    Yang, Jinwei
    Tian, Zhiqiang
    Jiang, Ruyun
    Yang, Fei
    Jiao, Kemeng
    Qi, Menglei
    Liu, Lili
    Zhang, Baozhu
    Niu, Jishan
    Jiang, Yumei
    Li, Yongchun
    Yin, Jun
    GENES, 2023, 14 (04)