Comparative transcriptome and tolerance mechanism analysis in the two contrasting wheat (Triticum aestivum L.) cultivars in response to drought and salinity stresses

被引:0
|
作者
Mengesha T. Dugasa
Xue Feng
Nian-Hong Wang
Junmei Wang
Feibo Wu
机构
[1] Zijingang Campus,Department of Agronomy, College of Agriculture and Biotechnology
[2] Zhejiang University,The Institute of Crops and Nuclear Technology Utilization
[3] Zhejiang Academy of Agricultural Sciences,Jiangsu Co
[4] Yangzhou University,Innovation Center for Modern Production Technology of Grain Crops
来源
Plant Growth Regulation | 2021年 / 94卷
关键词
Drought; Salinity; Tolerance; Transcriptome; Wheat (; L.);
D O I
暂无
中图分类号
学科分类号
摘要
Drought and salinity are the two important and commonly co-occurring abiotic stresses affecting plant growth and productivity worldwide. Here, we compared the genome-wide transcriptome in the two contrasting wheat cultivars (JM22, drought/salt tolerant; YM20, salt sensitive) in response to drought (10% soil moisture) and salinity (100 mM NaCl) stresses. A total of 295 and 94 genes were characterized as drought and salinity responsive according to their different expression profile between JM22 and YM20 in response to drought and salinity stresses, respectively. Of these, 193 and 67 genes, up-regulated in JM22 while down-regulated/unchanged in YM20 and 103 and 27 genes unchanged in JM22 but down-regulated in YM20, under drought and salinity, respectively. Functional enrichment analysis showed that, JM22 recorded higher expression for genes related to ROS detoxification and defense, in response to drought (e.g. phenolic glucosidemalonyltransferase and anthocyanidin 5,3-O-glucosyltransferase-like) and salinity (flavonoid 3′-monooxygenase and heat shock 70 kDa protein). Meanwhile, genes encoding phytohormone and signal transduction (e.g. cytokinin, LRR receptor kinase and LRK14) were prominently up-regulated in JM22 under drought. F-type H+/Na+-transporting ATPase subunit beta, and Ca2+ signal transduction sensors and key regulatory genes responsible, including zinc finger, NAC and WRKY were showed higher expression in JM22 in salinity stress. Further analysis of genotypic difference in transcriptome in response to drought and salinity, we identified 10 DEGs, annotated to cellular process, metabolic process, osmotic regulation, and MAPK signaling pathway, being co-identified as drought and salinity tolerance associated DEGs. Our results suggest that the co-expression of these genes was important for tolerating and adapting to drought and salinity stresses in JM22. This finding increases our knowledge and understanding of the wheat drought and salinity tolerance mechanism and provides molecular bases in breeding potential under drought and salinity stresses.
引用
收藏
页码:101 / 114
页数:13
相关论文
共 50 条
  • [21] Screening of Wheat (Triticum aestivum L.) Genotypes for Drought Tolerance through Agronomic and Physiological Response
    Ahmad, Ali
    Aslam, Zubair
    Javed, Talha
    Hussain, Sadam
    Raza, Ali
    Shabbir, Rubab
    Mora-Poblete, Freddy
    Saeed, Tasbiha
    Zulfiqar, Faisal
    Ali, Muhammad Moaaz
    Nawaz, Muhammad
    Rafiq, Muhammad
    Osman, Hany S.
    Albaqami, Mohammed
    Ahmed, Mohamed A. A.
    Tauseef, Muhammad
    AGRONOMY-BASEL, 2022, 12 (02):
  • [22] Effect of Cadmium and Salinity Stresses on Growth and Antioxidant Enzyme Activities of Wheat (Triticum aestivum L.)
    Mohammad Shafi
    Jehan Bakht
    Mohammad Jaffar Hassan
    Mohammad Raziuddin
    Guoping Zhang
    Bulletin of Environmental Contamination and Toxicology, 2009, 82 : 772 - 776
  • [23] Transcriptome analysis during vernalization in wheat (Triticum aestivum L.)
    Jiao Wang
    Lei Sun
    Hongwei Zhang
    Bo Jiao
    Haibo Wang
    Shuo Zhou
    BMC Genomic Data, 24
  • [24] Salinity and drought interaction in wheat (Triticum aestivum L.) is affected by the genotype and plant growth stage
    Muhammad Saqib
    Javaid Akhtar
    Ghulam Abbas
    Muhammad Nasim
    Acta Physiologiae Plantarum, 2013, 35 : 2761 - 2768
  • [25] Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves
    Hua Li
    Min Li
    Xingliang Wei
    Xia Zhang
    Ruili Xue
    Yidan Zhao
    Huijie Zhao
    Molecular Genetics and Genomics, 2017, 292 : 1091 - 1110
  • [26] Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves
    Li, Hua
    Li, Min
    Wei, Xingliang
    Zhang, Xia
    Xue, Ruili
    Zhao, Yidan
    Zhao, Huijie
    MOLECULAR GENETICS AND GENOMICS, 2017, 292 (05) : 1091 - 1110
  • [27] BIOCHEMICAL RESPONSE OF TWO WHEAT CULTIVARS (TRITICUM AESTIVUM L.) TO GAMMA RADIATION
    Borzouei, A.
    Kafi, M.
    Sayahi, R.
    Rabiei, E.
    Amin, P. Sayad
    PAKISTAN JOURNAL OF BOTANY, 2013, 45 (02) : 473 - 477
  • [28] Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance
    Kumar, Jitendra
    Gunapati, Samatha
    Kianian, Shahryar F.
    Singh, Sudhir P.
    PROTOPLASMA, 2018, 255 (05) : 1487 - 1504
  • [29] Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.)
    Devi, Rachana
    Kaur, Narinder
    Gupta, Anil Kumar
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2012, 49 (04) : 257 - 265
  • [30] COMPARATIVE PERFORMANCE OF TWO BREAD WHEAT (TRITICUM AESTIVUM L.) GENOTYPES UNDER SALINITY STRESS
    Yassin, M.
    El Sabagh, A.
    Mekawy, A. M. M.
    Islam, M. S.
    Hossain, A.
    Barutcular, C.
    Alharby, H.
    Bamagoos, A.
    Liu, L.
    Ueda, A.
    Saneoka, H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (02): : 5029 - 5041