Few-shot bearing fault diagnosis using GAVMD–PWVD time–frequency image based on meta-transfer learning

被引:0
|
作者
Pengying Wei
Mingliang Liu
Xiaohang Wang
机构
[1] Heilongjiang University,Department of Automation
[2] Key Laboratory of Information Fusion Estimation and Detection,undefined
来源
Journal of the Brazilian Society of Mechanical Sciences and Engineering | 2023年 / 45卷
关键词
Rolling bearing; Fault diagnosis; Time–frequency image; Few-shot learning; Meta-learning; Transfer learning; Relation network;
D O I
暂无
中图分类号
学科分类号
摘要
Rolling bearings are crucial components in rotating machinery and often operate under high speeds and heavy loads for extended periods of time. If a bearing fails, it can disrupt the normal functioning of the machinery and lead to economic losses and even casualties. As a result, diagnosing faults in rolling bearings is critical and urgent. Currently, traditional fault diagnosis methods and deep learning-based methods are used for rolling bearing fault diagnosis. However, traditional methods require knowledge of signal processing techniques and selecting fault features through artificial algorithms. On the other hand, deep learning-based methods require a large number of labeled samples, but fault samples are often limited in practice. Additionally, there can be a problem of insufficient generalization ability when bearing working conditions change, which limits the application of deep learning in bearing fault diagnosis. To address this issue, a novel method is proposed in this paper that involves few-shot transfer learning and meta-learning. The method consists of four stages: using genetic algorithm to determine penalty factor and modal numbers adaptively in variational modal decomposition (GAVMD), combining correlation coefficient to eliminate useless modes, obtaining the instantaneous frequency characteristics of useful modes through Pseudo Wigner–Ville Distribution (PWVD), and using GAVMD with PWVD to obtain time–frequency images of the vibration signals of the rotating bearing. Finally, an improved relational network with deep coding ability and attention mechanism (AM) is constructed based on meta-transfer-learning and original relational network (MTLRN-AM). The experiments in this paper are based on the benchmark dataset of bearing fault diagnosis, and the results show that the proposed method has better multi-task learning ability in meta-learning and better classification performance in few-shot scenarios for bearing fault diagnosis. The average recognition rate reached 96.53% and 98% in 10-way 1-shot and 10-way 5-shot, respectively.
引用
收藏
相关论文
共 50 条
  • [41] Augmentation-based discriminative meta-learning for cross-machine few-shot fault diagnosis
    PengCheng Xia
    YiXiang Huang
    YuXiang Wang
    ChengLiang Liu
    Jie Liu
    Science China Technological Sciences, 2023, 66 : 1698 - 1716
  • [42] Fault diagnosis method for sucker rod well with few shots based on meta-transfer learning
    Zhang, Kai
    Wang, Qiang
    Wang, Lingbo
    Zhang, Huaqing
    Zhang, Liming
    Yao, Jun
    Yang, Yongfei
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 212
  • [43] Few-Shot Learning Approaches for Fault Diagnosis Using Vibration Data: A Comprehensive Review
    Liang, Xiaoxia
    Zhang, Ming
    Feng, Guojin
    Wang, Duo
    Xu, Yuchun
    Gu, Fengshou
    SUSTAINABILITY, 2023, 15 (20)
  • [44] A novel meta-transfer learning approach via convolutional multi-head self-attention network for few-shot fault diagnosis
    Wan, Lanjun
    Huang, Le
    Ning, Jiaen
    Li, Changyun
    Li, Keqin
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [45] Cross-Category Mechanical Fault Diagnosis Based on Deep Few-Shot Learning
    Xu, Juan
    Shi, Yongfang
    Yuan, Xiaohui
    Lu, Siliang
    IEEE SENSORS JOURNAL, 2021, 21 (24) : 27698 - 27709
  • [46] A meta-learning network with anti-interference for few-shot fault diagnosis
    Zhao, Zhiqian
    Zhao, Runchao
    Wu, Xianglin
    Hu, Xiuli
    Che, Renwei
    Zhang, Xiang
    Jiao, Yinghou
    NEUROCOMPUTING, 2023, 552
  • [47] A classification algorithm based on improved meta learning and transfer learning for few-shot medical images
    Zhang, Bingjie
    Gao, Baolu
    Liang, Siyuan
    Li, Xiaoyang
    Wang, Hao
    IET IMAGE PROCESSING, 2023, 17 (12) : 3589 - 3598
  • [48] Federated Meta-Learning Framework for Few-shot Fault Diagnosis in Industrial IoT
    Chen, Jiao
    Tang, Jianhua
    Chen, Jie
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2993 - 2998
  • [49] Data augmentation for rolling bearing fault diagnosis using an enhanced few-shot Wasserstein auto-encoder with meta-learning
    Pei, Zeyu
    Jiang, Hongkai
    Li, Xingqiu
    Zhang, Jianjun
    Liu, Shaowei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (08)
  • [50] Learning meta-knowledge for few-shot image emotion recognition
    Zhou, Fan
    Cao, Chengtai
    Zhong, Ting
    Geng, Ji
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168