Bivariate q-Bernstein-Schurer-Kantorovich Operators

被引:0
|
作者
P. N. Agrawal
Zoltán Finta
A. Sathish Kumar
机构
[1] Indian Institute of Technology Roorkee,Department of Mathematics
[2] Babeş-Bolyai University,Department of Mathematics
来源
Results in Mathematics | 2015年 / 67卷
关键词
41A36; 41A25; 26A15; 26A16; -Bernstein-Schurer-Kantorovich operators; -integers; rate of convergence; modulus of continuity; bivariate operators;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to construct a bivariate generalization of a new kind of Kantorovich type q-Bernstein-Schurer operators. We give the rate of convergence by using the modulus of continuity and the degree of approximation by means of Lipschitz type class. Finally, we obtain a Voronovskaja type asymptotic theorem for the bivariate operators.
引用
收藏
页码:365 / 380
页数:15
相关论文
共 50 条
  • [1] Bivariate q-Bernstein-Schurer-Kantorovich Operators
    Agrawal, P. N.
    Finta, Zoltan
    Kumar, A. Sathish
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 365 - 380
  • [2] q-Bernstein-Schurer-Kantorovich Operators
    Ozarslan, Mehmet Ali
    Vedi, Tuba
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [3] q-Bernstein-Schurer-Kantorovich Operators
    Mehmet Ali Özarslan
    Tuba Vedi
    Journal of Inequalities and Applications, 2013
  • [4] Approximation Properties of Bivariate Extension of q-Bernstein-Schurer-Kantorovich operators
    Acu, Ana Maria
    Muraru, Carmen Violeta
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 265 - 279
  • [5] q-Bernstein-Schurer-Kantorovich type operators
    Agrawal, P. N.
    Goyal, Meenu
    Kajla, Arun
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 169 - 180
  • [6] q-Bernstein-Schurer-Kantorovich type operators
    P. N. Agrawal
    Meenu Goyal
    Arun Kajla
    Bollettino dell'Unione Matematica Italiana, 2015, 8 (3) : 169 - 180
  • [7] APPROXIMATION PROPERTIES OF THE GENERALIZED q-BERNSTEIN-SCHURER-KANTOROVICH OPERATORS
    Mursaleen, M.
    Khan, T.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [8] Approximation Properties of Bivariate Extension of q-Bernstein–Schurer–Kantorovich operators
    Ana Maria Acu
    Carmen Violeta Muraru
    Results in Mathematics, 2015, 67 : 265 - 279
  • [9] Bivariate α,q-Bernstein-Kantorovich Operators and GBS Operators of Bivariate α,q-Bernstein-Kantorovich Type
    Cai, Qing-Bo
    Cheng, Wen-Tao
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (12)
  • [10] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12