Using observational study data as an external control group for a clinical trial: an empirical comparison of methods to account for longitudinal missing data

被引:0
作者
Vibeke Norvang
Espen A. Haavardsholm
Sara K. Tedeschi
Houchen Lyu
Joseph Sexton
Maria D. Mjaavatten
Tore K. Kvien
Daniel H. Solomon
Kazuki Yoshida
机构
[1] Diakonhjemmet Hospital,Division of Rheumatology and Research
[2] Department of Medicine,Division of Rheumatology, Inflammation, and Immunity
[3] Brigham and Women’s Hospital/Harvard Medical School,Faculty of Medicine
[4] University of Oslo,Department of Orthopedics
[5] Harvard Medical School,undefined
[6] Chinese PLA General Hospital,undefined
来源
BMC Medical Research Methodology | / 22卷
关键词
External control group; Missing data; Multiple imputation; Inverse probability weighting;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[41]   Assessment of score- and Rasch-based methods for group comparison of longitudinal patient-reported outcomes with intermittent missing data (informative and non-informative) [J].
de Bock, Elodie ;
Hardouin, Jean-Benoit ;
Blanchin, Myriam ;
Le Neel, Tanguy ;
Kubis, Gildas ;
Sebille, Veronique .
QUALITY OF LIFE RESEARCH, 2015, 24 (01) :19-29
[42]   Assessment of score- and Rasch-based methods for group comparison of longitudinal patient-reported outcomes with intermittent missing data (informative and non-informative) [J].
Élodie de Bock ;
Jean-Benoit Hardouin ;
Myriam Blanchin ;
Tanguy Le Neel ;
Gildas Kubis ;
Véronique Sébille .
Quality of Life Research, 2015, 24 :19-29
[43]   How to deal with missing longitudinal data in cost of illness analysis in Alzheimer’s disease—suggestions from the GERAS observational study [J].
Mark Belger ;
Josep Maria Haro ;
Catherine Reed ;
Michael Happich ;
Kristin Kahle-Wrobleski ;
Josep Maria Argimon ;
Giuseppe Bruno ;
Richard Dodel ;
Roy W Jones ;
Bruno Vellas ;
Anders Wimo .
BMC Medical Research Methodology, 16
[44]   Application of Real-World Data to External Control Groups in Oncology Clinical Trial Drug Development [J].
Yap, Timothy A. ;
Jacobs, Ira ;
Baumfeld Andre, Elodie ;
Lee, Lauren J. ;
Beaupre, Darrin ;
Azoulay, Laurent .
FRONTIERS IN ONCOLOGY, 2022, 11
[45]   A simulation study on missing data imputation for dichotomous variables using statistical and machine learning methods [J].
Ge, Yingfeng ;
Li, Zhiwei ;
Zhang, Jinxin .
SCIENTIFIC REPORTS, 2023, 13 (01)
[46]   How to deal with missing longitudinal data in cost of illness analysis in Alzheimer's disease-suggestions from the GERAS observational study [J].
Belger, Mark ;
Haro, Josep Maria ;
Reed, Catherine ;
Happich, Michael ;
Kahle-Wrobleski, Kristin ;
Argimon, Josep Maria ;
Bruno, Giuseppe ;
Dodel, Richard ;
Jones, Roy W. ;
Vellas, Bruno ;
Wimo, Anders .
BMC MEDICAL RESEARCH METHODOLOGY, 2016, 16
[47]   Simulation-Based Study Comparing Multiple Imputation Methods for Non-Monotone Missing Ordinal Data in Longitudinal Settings [J].
Donneau, A. F. ;
Mauer, M. ;
Lambert, P. ;
Molenberghs, G. ;
Albert, A. .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2015, 25 (03) :570-601
[48]   Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study [J].
Marshall, Andrea ;
Altman, Douglas G. ;
Holder, Roger L. .
BMC MEDICAL RESEARCH METHODOLOGY, 2010, 10
[49]   Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study [J].
Andrea Marshall ;
Douglas G Altman ;
Roger L Holder .
BMC Medical Research Methodology, 10
[50]   An Empirical Comparison of Statistical Methods for Missing Data in Randomized, Double-Blind, Placebo-Controlled, Phase 3 Clinical Trials for Chronic Pain and Lipid-Lowering Products [J].
Gnang, Jeanine ;
Kim, Yoonhee ;
Ren, Yi ;
Travis, James ;
Kim, Yongman .
THERAPEUTIC INNOVATION & REGULATORY SCIENCE, 2020, 54 (06) :1416-1427