Using observational study data as an external control group for a clinical trial: an empirical comparison of methods to account for longitudinal missing data

被引:0
作者
Vibeke Norvang
Espen A. Haavardsholm
Sara K. Tedeschi
Houchen Lyu
Joseph Sexton
Maria D. Mjaavatten
Tore K. Kvien
Daniel H. Solomon
Kazuki Yoshida
机构
[1] Diakonhjemmet Hospital,Division of Rheumatology and Research
[2] Department of Medicine,Division of Rheumatology, Inflammation, and Immunity
[3] Brigham and Women’s Hospital/Harvard Medical School,Faculty of Medicine
[4] University of Oslo,Department of Orthopedics
[5] Harvard Medical School,undefined
[6] Chinese PLA General Hospital,undefined
来源
BMC Medical Research Methodology | / 22卷
关键词
External control group; Missing data; Multiple imputation; Inverse probability weighting;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[31]   Oops, we missed a spot: Comparing data substitution methods for non-random missing survey data in a longitudinal study [J].
Cheung, Theodore C. K. ;
Cost, Katherine T. ;
Esser, Kayla ;
Anagnostou, Evdokia ;
Birken, Catherine S. ;
Charach, Alice ;
Monga, Suneeta ;
Korczak, Daphne J. ;
Crosbie, Jennifer .
JOURNAL OF AFFECTIVE DISORDERS, 2025, 370 :434-438
[32]   Comparison of methods of handling missing data in individual patient data meta-analyses: An empirical example on antibiotics in children with acute otitis media [J].
Koopman, Laura ;
van der Heijden, Geert J. M. G. ;
Grobbee, Diederick E. ;
Rovers, Maroeska M. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 167 (05) :540-545
[33]   Sensitivity analysis of incomplete longitudinal data departing from the missing at random assumption: Methodology and application in a clinical trial with drop-outs [J].
Moreno-Betancur, M. ;
Chavance, M. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) :1471-1489
[34]   A comparison of data imputation methods using Bayesian compressive sensing and Empirical Mode Decomposition for environmental temperature data [J].
Williams, D. Alexandra ;
Nelsen, Benjamin ;
Berrett, Candace ;
Williams, Gustavious P. ;
Moon, Todd K. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 102 :172-184
[35]   A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study [J].
De Silva, Anurika Priyanjali ;
Moreno-Betancur, Margarita ;
De Livera, Alysha Madhu ;
Lee, Katherine Jane ;
Simpson, Julie Anne .
BMC MEDICAL RESEARCH METHODOLOGY, 2017, 17
[36]   Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study [J].
Shah, Anoop D. ;
Bartlett, Jonathan W. ;
Carpenter, James ;
Nicholas, Owen ;
Hemingway, Harry .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (06) :764-774
[37]   A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study [J].
Anurika Priyanjali De Silva ;
Margarita Moreno-Betancur ;
Alysha Madhu De Livera ;
Katherine Jane Lee ;
Julie Anne Simpson .
BMC Medical Research Methodology, 17
[38]   A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study [J].
McGuinness, Myra B. ;
Kasza, Jessica ;
Karahalios, Amalia ;
Guymer, Robyn H. ;
Finger, Robert P. ;
Simpson, Julie A. .
BMC MEDICAL RESEARCH METHODOLOGY, 2019, 19 (01)
[39]   A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study [J].
Myra B. McGuinness ;
Jessica Kasza ;
Amalia Karahalios ;
Robyn H. Guymer ;
Robert P. Finger ;
Julie A. Simpson .
BMC Medical Research Methodology, 19
[40]   The impact of missing data on estimation of health-related quality of life outcomes: An analysis of a randomized longitudinal clinical trial [J].
Du H. ;
Hahn E.A. ;
Cella D. .
Health Services and Outcomes Research Methodology, 2011, 11 (3-4) :134-144