On classification of groups having Schur multiplier of maximum order II

被引:0
作者
Pradeep K. Rai
机构
[1] IIT Patna,Department of Mathematics
来源
Archiv der Mathematik | 2018年 / 111卷
关键词
Schur multiplier; Finite ; -group; 20J99; 20D15;
D O I
暂无
中图分类号
学科分类号
摘要
We complete the classification of finite p-groups having Schur multiplier of maximum order.
引用
收藏
页码:129 / 133
页数:4
相关论文
共 39 条
[21]   Schur multiplier and Schur covers of relative Rota-Baxter groups [J].
Belwal, Pragya ;
Rathee, Nishant ;
Singh, Mahender .
JOURNAL OF ALGEBRA, 2024, 657 :327-362
[22]   A remark on the Schur multiplier of p-groups [J].
Salemkar, Ali Reza ;
Moghaddam, Mohammed Reza R. ;
Davarpanah, Mohammad ;
Saeedi, Farshid .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (04) :1215-1221
[23]   On Schur multiplier and projective representations of Heisenberg groups [J].
Hatui, Sumana ;
Singla, Pooja .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (11)
[24]   The maximum number of triangles in a graph and its relation to the size of the Schur multiplier of special p-groups [J].
Mavely, Tony Nixon ;
Thomas, Viji Zachariah .
COMMUNICATIONS IN ALGEBRA, 2023, 51 (07) :2983-2994
[25]   NOETHER SETTINGS FOR CENTRAL EXTENSIONS OF GROUPS WITH ZERO SCHUR MULTIPLIER [J].
Beneish, Esther .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2002, 1 (01) :107-112
[26]   The Schur multiplier of p-groups with large derived subgroup [J].
Niroomand, Peyman .
ARCHIV DER MATHEMATIK, 2010, 95 (02) :101-103
[27]   The Schur multiplier of p-groups with large derived subgroup [J].
Peyman Niroomand .
Archiv der Mathematik, 2010, 95 :101-103
[28]   The schur multiplier of a nilpotent Lie algebra with derived subalgebra of maximum dimension [J].
Johari, Farangis ;
Niroomand, Peyman ;
Shamsaki, Afsaneh .
QUAESTIONES MATHEMATICAE, 2021, 44 (06) :849-856
[29]   Classification of Finite p-Groups by the Size of Their Schur Multipliers [J].
Peyman Niroomand ;
Farangis Johari .
Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 :2137-2150
[30]   On linear codes constructed from finite groups with a trivial Schur multiplier [J].
Darafsheh, Mohammad Reza ;
Rodrigues, Bernardo G. ;
Saeidi, Amin .
MATHEMATICAL COMMUNICATIONS, 2023, 28 (01) :85-104