Optimal design of rectangular RC sections for ultimate bending strength

被引:0
作者
A. F. M. Barros
M. H. F. M. Barros
C. C. Ferreira
机构
[1] Instituto Superior Técnico,
[2] Faculdade de Ciências e Tecnologia da Universidade de Coimbra,undefined
来源
Structural and Multidisciplinary Optimization | 2012年 / 45卷
关键词
Reinforced concrete; Section design; Reinforcement optimization; Bending moment; Eurocode 2;
D O I
暂无
中图分类号
学科分类号
摘要
A minimum cost problem for ultimate strength in bending of rectangular reinforced concrete sections is investigated. The design variables are section depth and steel reinforcement areas. State equations are those of equilibrium with compression depth as state variable. The Kuhn-Tucker optimality conditions are solved analytically and formulas for nondimensional design and state variables are obtained in four cases: Two singly-reinforced solutions with either maximum allowable depth or smaller; Two doubly-reinforced with maximum allowable depth and either maximum compression depth or smaller. Each of the solutions is optimal in a region of the plane ‘nondimensional bending moment’–‘cost-effectiveness ratio of concrete to steel’. The formulas are for an arbitrary concrete constitutive law with tension cut-off and are specialized for the parabola-rectangle law of Eurocode 2.
引用
收藏
页码:845 / 860
页数:15
相关论文
共 16 条
  • [11] Kanagasundaram S(undefined)undefined undefined undefined undefined-undefined
  • [12] Karihaloo BL(undefined)undefined undefined undefined undefined-undefined
  • [13] Lepš M(undefined)undefined undefined undefined undefined-undefined
  • [14] Šejnoha M(undefined)undefined undefined undefined undefined-undefined
  • [15] Samman MM(undefined)undefined undefined undefined undefined-undefined
  • [16] Erbatur HF(undefined)undefined undefined undefined undefined-undefined