Ant colony optimization for mining gradual patterns

被引:0
作者
Dickson Odhiambo Owuor
Thomas Runkler
Anne Laurent
Joseph Onderi Orero
Edmond Odhiambo Menya
机构
[1] SCES Strathmore University,
[2] Siemens AG,undefined
[3] LIRMM Univ Montpellier,undefined
[4] CNRS,undefined
来源
International Journal of Machine Learning and Cybernetics | 2021年 / 12卷
关键词
Ant colony optimization; Data mining; Genetic algorithm; Gradual patterns; Particle swarm optimization; Swarm intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
Gradual pattern extraction is a field in Knowledge Discovery in Databases that maps correlations between attributes of a data set as gradual dependencies. A gradual dependency may take the form: “the more AttributeK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{K}$$\end{document}, the less AttributeL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{L}$$\end{document}”. Classical approa-ches for extracting gradual patterns extend either a breath-first search or a depth-first search strategy. However, these strategies can be computationally expensive and inefficient especially when dealing with large data sets. In this study, we investigate 3 population-based optimization techniques (i.e. ant colony optimization, genetic algorithm and particle swarm optimization) that may be employed improve the efficiency of mining gradual patterns. We show that ant colony optimization technique is better suited for gradual pattern mining task than the other 2 techniques. Through computational experiments on real-world data sets, we compared the computational performance of the proposed algorithms that implement the 3 population-based optimization techniques to classical algorithms for the task of gradual pattern mining and we show that the proposed algorithms outperform their classical counterparts.
引用
收藏
页码:2989 / 3009
页数:20
相关论文
共 44 条
[1]  
Aryadinata YS(2013)M2LGP? Mining multiple level gradual patterns Int J Comput Inf Eng 7 353-360
[2]  
Laurent A(2007)An alternative approach to discover gradual dependencies Int J Uncertain Fuzziness Knowl Based Syst 15 559-570
[3]  
Sala M(2005)Ant colony optimization: introduction and recent trends Phys Life Rev 2 353-373
[4]  
Berzal F(2009)Evolution patterns and gradual trends Int J Intell Syst 24 1013-1038
[5]  
Cubero JC(1992)Genetic algorithms Sci Am 267 66-73
[6]  
Sanchez D(2015)Comparing and combining predictive business process monitoring techniques IEEE Trans Syst Man Cybern Syst 45 276-290
[7]  
Vila MA(2014)Paraminer: a generic pattern mining algorithm for multi-core architectures Data Min Knowl Discov 28 593-633
[8]  
Serrano JM(2018)Using resistin, glucose, age and BMI to predict the presence of breast cancer BMC Cancer 18 29-451
[9]  
Blum C(2019)A hybrid model of fuzzy min-max and brain storm optimization for feature selection and data classification Neurocomputing 333 440-508
[10]  
Fiot C(2018)Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection Comput Electr Eng 67 497-1251