A Synchronized Two-Dimensional α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document}–Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega $\end{document} Model of the Solar Dynamo

被引:0
作者
M. Klevs
F. Stefani
L. Jouve
机构
[1] Helmholtz-Zentrum Dresden – Rossendorf,Institute for Numerical Modelling
[2] University of Latvia,undefined
[3] Univ. Toulouse,undefined
[4] IRAP,undefined
[5] CNRS,undefined
[6] UMR 5277,undefined
[7] CNES,undefined
[8] UPS,undefined
关键词
Solar cycle; Models; Helicity; Theory;
D O I
10.1007/s11207-023-02173-y
中图分类号
学科分类号
摘要
We consider a conventional α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document}–Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega $\end{document}-dynamo model with meridional circulation that exhibits typical features of the solar dynamo, including a Hale-cycle period of around 20 years and a reasonable shape of the butterfly diagram. With regard to recent ideas of a tidal synchronization of the solar cycle, we complement this model by an additional time-periodic α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document}-term that is localized in the tachocline region. It is shown that amplitudes of some decimeters per second are sufficient for this α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document}-term to become capable of entraining the underlying dynamo. We argue that such amplitudes of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} may indeed be realistic, since velocities in the range of m s−1 are reachable, e.g., for tidally excited magneto–Rossby waves.
引用
收藏
相关论文
共 200 条
[81]  
Link F.(undefined)undefined undefined undefined undefined-undefined
[82]  
Mamatsashvili G.(undefined)undefined undefined undefined undefined-undefined
[83]  
Stefani F.(undefined)undefined undefined undefined undefined-undefined
[84]  
Hollerbach R.(undefined)undefined undefined undefined undefined-undefined
[85]  
Rüdiger G.(undefined)undefined undefined undefined undefined-undefined
[86]  
Marquez-Artavia X.(undefined)undefined undefined undefined undefined-undefined
[87]  
Jones C.A.(undefined)undefined undefined undefined undefined-undefined
[88]  
Tobias S.M.(undefined)undefined undefined undefined undefined-undefined
[89]  
Monteiro G.(undefined)undefined undefined undefined undefined-undefined
[90]  
Guerrero G.(undefined)undefined undefined undefined undefined-undefined