Multiscale modeling: recent progress and open questions

被引:12
作者
Chopard B. [1 ]
Falcone J.-L. [1 ]
Kunzli P. [1 ]
Veen L. [2 ]
Hoekstra A. [3 ,4 ]
机构
[1] Computer Science Department, University of Geneva, Geneva
[2] Netherlands eScience Center, Amsterdam
[3] Computational Science Lab, University of Amsterdam, Amsterdam
[4] ITMO University, Saint-Petersbourg
基金
欧盟地平线“2020”;
关键词
Coupling middleware (MUSCLE); High Perfomance multiscale computing; Mutiscale modeling; Scale bridging techniques; Theoretical framework;
D O I
10.1007/s41939-017-0006-4
中图分类号
学科分类号
摘要
Many important scientific problems are inherently multi scale. This is, for instance, the case in models in material science or environmental science. A big challenge is to formulate generic frameworks for multiscale modeling and simulation. Despite its importance, the scientific community still lacks a well-accepted generic methodology to address multiscale computating. We review a recent theoretical framework which aims at filling this gap. We also present new results and extension in relation with scale bridging methods and execution multiscale simulation on HPC systems, and discuss open questions related to this topic. © 2018, Springer International Publishing AG, part of Springer Nature.
引用
收藏
页码:57 / 68
页数:11
相关论文
共 30 条
[1]  
Alowayyed S., Groen D., Coveney P.V., Hoekstra A., Multiscale computing in the exascale era, J Comput Sci, 22, pp. 15-25, (2017)
[2]  
Alowayyed S., Piontek T., Suter J.L., Hoenen O., Groen D., Luk O.O., Bosak B., Kopta P., Kurowski K., Perks O., Brabazon K., Jancauskas V., Coster D., Coveney P.V., Hoekstra A.G., Patterns for high performance multiscale computing, Future Gener Comput Syst, (2017)
[3]  
Blegacem M.B., Chopard B., A hybrid HPC/cloud distributed infrastructure: Coupling EC2 cloud resources with HPC clusters to run large tightly coupled multiscale applications, Future Gener Comput Syst, (2015)
[4]  
Belgacem M.B., Chopard B., Muscle-hpc: a new high performance api to couple multiscale parallel applications, Future Gener Comput Syst, 67, pp. 72-82, (2016)
[5]  
Belgacem M.B., Chopard B., Borgdorff J., Mamonski M., Rycerz K., Harezlak D., Distributed multiscale computations using the MAPPER framework, Procedia Comput Sci, 18, pp. 1106-1115, (2013)
[6]  
Borgdorf J., Falcone J.L., Lorenz E., Bona-Casas C., Chopard B., Hoekstra A.G., Foundations of distributed multiscale computing: formalization, specification, analysis and execution, J Parallel Distrib Comput, 73, pp. 465-483, (2013)
[7]  
Borgdorff J., Mamonski M., Bosak B., Groen D., Belgacem M.B., Kurowski K., Hoekstra A.G., Distributed multiscale computing with the multiscale modeling library and runtime environment, Procedia Comput Sci, 18, pp. 1097-1105, (2013)
[8]  
Borgdorff J., Mamonski M., Bosak B., Groen D., Belgacem M.B., Kurowski K., Hoekstra A.G., Multiscale computing with the multiscale modeling library and runtime environment, Procedia Comput Sci, 18, pp. 1097-1105, (2013)
[9]  
Borgdorff J., Belgacem M.B., Bona-Casas C., Fazendeiro L., Groen D., Hoenen O., Mizeranschi A., Suter J.L., Coster D., Coveney P.V., Dubitzky W., Hoekstra A.G., Strand P., Chopard B., Performance of distributed multiscale simulations, Philos Trans A, 372, 2021, (2014)
[10]  
Caiazzo A., Falcone J.L., Chopard B., Hoekstra A.G., Asymptotic analysis of complex automata models for reaction-diffusion systems, Appl Numer Math, 59, 8, pp. 2023-2034, (2009)