The skew commutators of Toeplitz operators or Hankel operators on Hardy spaces

被引:0
作者
Yongning Li
Hanyi Zheng
Xuanhao Ding
机构
[1] Chongqing Technology and Business University,School of Mathematics and Statistics
来源
Banach Journal of Mathematical Analysis | 2024年 / 18卷
关键词
Skew commutator; Toeplitz operator; Hankel operator; Hardy space; 47B35; 47B47;
D O I
暂无
中图分类号
学科分类号
摘要
Let A and B be two bounded linear operators on a Hilbert space. B is called the skew commutator of A if ∗[A,B]=AB-BA∗=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{*}[A, B]=AB-BA^{*}=0.$$\end{document} In this paper, we completely characterize when a Toeplitz operator on the Hardy space is a skew commutator of a Hankel operator and when a Hankel operator on the Hardy space is a skew commutator of a Toeplitz operator. Moreover, we also obtain a necessary and sufficient condition for the product of a Hankel operator and a Toeplitz operator to be self-adjoint on the Hardy space.
引用
收藏
相关论文
共 9 条
[1]  
Guo K(2003)Essentially commuting Hankel and Toeplitz operators J. Funct. Anal. 201 121-147
[2]  
Zheng D(2019)Strong 2-skew commutativity preserving maps on prime rings with involution Bull. Malays. Math. Sci. Soc. 42 33-49
[3]  
Hou J(2017)Strong 3-commutativity preserving maps on standard operator algebra Acta Math. Sin. 33 1659-1670
[4]  
Wang W(2000)When do Toeplitz and Hankel operators commute? Integr. Equ. Oper. Theory 37 341-349
[5]  
Liu M(2017)Strong 3-commutativity preserving maps on prime rings Linear Multilinear Algebra 65 2153-2169
[6]  
Hou J(undefined)undefined undefined undefined undefined-undefined
[7]  
Martínez-Avendaño R(undefined)undefined undefined undefined undefined-undefined
[8]  
Qi X(undefined)undefined undefined undefined undefined-undefined
[9]  
Hou J(undefined)undefined undefined undefined undefined-undefined