An active-set algorithmic framework for non-convex optimization problems over the simplex

被引:0
作者
Andrea Cristofari
Marianna De Santis
Stefano Lucidi
Francesco Rinaldi
机构
[1] Università di Padova,Dipartimento di Matematica “Tullio Levi
[2] Sapienza Università di Roma,Civita”
来源
Computational Optimization and Applications | 2020年 / 77卷
关键词
Active-set methods; Unit simplex; Non-convex optimization; Large-scale optimization; 65K05; 90C06; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we describe a new active-set algorithmic framework for minimizing a non-convex function over the unit simplex. At each iteration, the method makes use of a rule for identifying active variables (i.e., variables that are zero at a stationary point) and specific directions (that we name active-set gradient related directions) satisfying a new “nonorthogonality” type of condition. We prove global convergence to stationary points when using an Armijo line search in the given framework. We further describe three different examples of active-set gradient related directions that guarantee linear convergence rate (under suitable assumptions). Finally, we report numerical experiments showing the effectiveness of the approach.
引用
收藏
页码:57 / 89
页数:32
相关论文
共 59 条
  • [1] Bertsekas DP(1982)Projected Newton methods for optimization problems with simple constraints SIAM J. Control Optim. 20 221-246
  • [2] Birgin EG(2002)Large-scale active-set box-constrained optimization method with spectral projected gradients Comput. Optim. Appl. 23 101-125
  • [3] Martínez JM(1997)Evolution towards the maximum clique J. Global Optim. 10 143-164
  • [4] Bomze IM(2017)A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem Appl. Math. Comput. 294 36-48
  • [5] Brás CP(2016)A feasible active set method with reoptimization for convex quadratic mixed-integer programming SIAM J. Optim. 26 1695-1714
  • [6] Fischer A(2010)Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm ACM Trans. Algorithms 6 63-401
  • [7] Júdice JJ(2017)A two-stage active-set algorithm for bound-constrained optimization J. Optim. Theory Appl. 172 369-125
  • [8] Schönefeld K(2008)The complexity of optimizing over a simplex, hypercube or sphere: a short survey CEJOR 16 111-423
  • [9] Seifert S(2012)An active set feasible method for large-scale minimization problems with bound constraints Comput. Optim. Appl. 53 395-809
  • [10] Buchheim C(2016)A fast active set block coordinate descent algorithm for SIAM J. Optim. 26 781-2838