Let X be a smooth algebraic surface, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ L \in \textrm{Pic}(X) $\end{document} and H an ample divisor on X. Set MX,H(2; L, c2) the moduli space of rank 2, H-stable vector bundles F on X with det(F) = L and c2(F) = c2. In this paper, we show that the geometry of X and of MX,H(2; L, c2) are closely related. More precisely, we prove that for any ample divisor H on X and any \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ L \in \textrm{Pic}(X) $\end{document}, there exists \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ n_0 \in \mathbb{Z} $\end{document} such that for all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ n_0 \leqq c_2 \in \mathbb{Z} $\end{document}, MX,H(2; L, c2) is rational if and only if X is rational.