Positive periodic solutions of nonlinear differential equations

被引:0
作者
Yuji Liu
Weigao Ge
机构
[1] Yueyang Teacher’s Univ.,Dept. of Math.
[2] Beijing Institute of Technology,Dept. of Appl. Math.
关键词
34B10; 34B15; positive periodic solution; differential equation; fixed-point theorem; growth condition;
D O I
10.1007/s11766-003-0064-8
中图分类号
学科分类号
摘要
The nonlinear differential equation *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x'\left( t \right) = - \delta \left( t \right)x\left( t \right) + f\left( {t,x\left( t \right)} \right)$$ \end{document} is considered, where δ(t) is a periodic function of periodic T, f(t,x) is continuous and periodic in t. It is showed that (*) has at least two positive T-periodic solutions under certain growth conditions imposed on f. Applications will be presented to illustrate the main results.
引用
收藏
页码:373 / 382
页数:9
相关论文
共 8 条
[1]  
Saker S. H.(2002)Oscillation and global attractivity in a periodic Nicholson’s Blowflies model Math. Comput. Modelling 35 719-731
[2]  
Agarwal S.(2001)Twin positive solutions of boundary value problem for ordinary differential equations and finite difference equations Computers and Mathematics with Applications 42 695-704
[3]  
Avery R. I.(2002)Positive periodic solutions of functional differential equations and population models Electronic J. Differential Equations 71 1-13
[4]  
Chyan C. J.(undefined)undefined undefined undefined undefined-undefined
[5]  
Henderson J.(undefined)undefined undefined undefined undefined-undefined
[6]  
Jiang D. Q.(undefined)undefined undefined undefined undefined-undefined
[7]  
Wei J.(undefined)undefined undefined undefined undefined-undefined
[8]  
Zhang B.(undefined)undefined undefined undefined undefined-undefined