Continuous/Discontinuous Galerkin Difference Discretizations of High-Order Differential Operators

被引:0
作者
J. W. Banks
B. Brett Buckner
T. Hagstrom
机构
[1] Rensselaer Polytechnic Institute,Department of Mathematical Sciences
[2] Southern Methodist University,Department of Mathematics
来源
Journal of Scientific Computing | 2022年 / 92卷
关键词
Difference methods; Galerkin methods; Interior penalty methods; Galerkin differences;
D O I
暂无
中图分类号
学科分类号
摘要
We develop continuous/discontinuous discretizations for high-order differential operators using the Galerkin Difference approach. Grid dispersion analyses are performed that indicate a nodal superconvergence in the ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2$$\end{document} norm. A treatment of the boundary conditions is described that ultimately leads to moderate growth in the spectral radius of the operators with polynomial degree, and in general the norms of the Galerkin Difference differentiation operators are significantly smaller than those arising from standard elements. Lastly, we observe that with the use of the Galerkin Difference space, the standard penalty terms required for discretizing high-order operators are not needed. Numerical results confirm the conclusions of the analyses performed.
引用
收藏
相关论文
共 52 条
  • [1] Boussinesq J(1872)Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond J. Math. Pures Appl. 17 55-undefined
  • [2] Korteweg DJ(1895)XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39 422-undefined
  • [3] de Vries G(2006)Exact solutions for the fourth order nonlinear Schrodinger equations with cubic and power law nonlinearities Math. Comput. Model. 43 802-undefined
  • [4] Wazwaz AM(1968)The TUBA Family of Plate Elements for the Matrix Displacement Method Aeronaut. J. 72 701-undefined
  • [5] Argyris JH(2000)Some mixed finite element methods for biharmonic equation J. Comput. Appl. Math. 126 91-undefined
  • [6] Fried I(1987)A Mixed Finite Element Method for the Biharmonic Equation SIAM J. Numer. Anal. 24 737-undefined
  • [7] Scharpf DW(2002)Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity Comput. Methods Appl. Mech. Engrg. 191 3669-undefined
  • [8] Cheng XL(2011)An interior penalty method for a sixth-order elliptic equation IMA J. Num. Anal. 31 1734-undefined
  • [9] Han W(2017)Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives J. Sci. Comput. 72 761-undefined
  • [10] Huang Hc(2018)Some recent developments in superconvergence of discontinuous Galerkin methods for time-dependent partial differential equations J. Sci. Comput. 77 1402-undefined