On an inverse curvature flow in two-dimensional space forms

被引:0
|
作者
Kwok-Kun Kwong
Yong Wei
Glen Wheeler
Valentina-Mira Wheeler
机构
[1] University of Wollongong,School of Mathematical Sciences
[2] University of Science and Technology of China,undefined
来源
Mathematische Annalen | 2022年 / 384卷
关键词
53E10; 58J35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the evolution of compact convex curves in two-dimensional space forms. The normal speed is given by the difference of the weighted inverse curvature with the support function, and in the case where the ambient space is the Euclidean plane, is equivalent to the standard inverse curvature flow. We prove that solutions exist for all time and converge exponentially fast in the smooth topology to a standard round geodesic circle. This has a number of consequences: first, to prove the isoperimetric inequality; second, to establish a range of weighted geometric inequalities; and third, to give a counterexample to the n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} case of a conjecture of Girão–Pinheiro.
引用
收藏
页码:1 / 24
页数:23
相关论文
共 50 条