A note on almost kähler manifolds

被引:0
作者
Domenico Catalano
Filip Defever
Ryszard Deszcz
Marian Hotloś
Zbigniew Olszak
机构
[1] ETH Zentrum,Mathematisches Institut
[2] KU Leuven,Zuivere en Toegepaste Differentiaalmeetkunde
[3] Agricultural University of Wroclaw,Department of Mathematics
[4] Wroclaw University of Technology,Institute of Mathematics
来源
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | 1999年 / 69卷
关键词
Riemannian Manifold; Scalar Curvature; Sectional Curvature; Einstein Manifold; Christoffel Symbol;
D O I
暂无
中图分类号
学科分类号
摘要
For anyn ≥ 2, we give examples of almost Kähler conformally flat manifoldsM2n which are not Kähler. We discuss the meaning of these examples in the context of the Goldberg conjecture on almost Kahler manifolds.
引用
收藏
页码:59 / 65
页数:6
相关论文
共 18 条
[1]  
Blair D. E.(1990)Nonexistence of 4-dimensional almost Kaehler manifolds of constant curvature Proc. Am. Math. Soc. 110 1033-1039
[2]  
Cordero L. A.(1985)Examples of compact non- Kähler almost Kähler manifolds Proc. Amer. Math. Soc. 95 280-286
[3]  
Fernandez M.(1969)Integrability of almost Kaehler manifolds Proc. Am. Math. Soc. 21 96-100
[4]  
Leon M. De(1996)Some simple examples of almost Kähler non-Kähler structures Math. Ann. 305 639-649
[5]  
Goldberg S. I.(1955)On the holonomy group of the conformally flat Riemannian manifold Nagoya Math. J. 9 161-171
[6]  
Jelonek W.(1988)Conformai geometry from the Riemannian viewpoint Aspects of Math. E12 65-91
[7]  
Kurita M.(1996)Four-dimensional almost Käler locally symmetric spaces Diff. Geom. Appl. 6 237-244
[8]  
Lafontaine J.(1996)Examples of non-Kähler, almost Kähler symmetric spaces C.R. Math. Rep. Acad. Sci. Canada 18 243-246
[9]  
Murakoshi N.(1994)Non-existence of almost Kähler structure on hyperbolic spaces of dimension 2 Math. Ann. 300 317-329
[10]  
Oguro T.(1996) (≥ 4) Tsukuba J. Math. 20 151-161