On a nonlinear fractional (p, q)-difference Schrödinger equation

被引:0
|
作者
Zhongyun Qin
Shurong Sun
机构
[1] University of Jinan,School of Mathematical Sciences
来源
Journal of Applied Mathematics and Computing | 2022年 / 68卷
关键词
Fractional (;  ; )-difference Schrödinger equation; Boundary value problem; Fixed point theorem in cones; Existence of solution; 26A33; 34A12; 34B15; 39A13;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the boundary value problem of a class of fractional (p, q)-difference Schrödinger equations. By applying Banach contraction mapping principle and a fixed point theorem in cones, we obtain the existence and uniqueness of solutions for the boundary value problem. An example illustrating the main results is also presented.
引用
收藏
页码:1685 / 1698
页数:13
相关论文
共 50 条
  • [1] A coupled system involving nonlinear fractional q-difference stationary Schrödinger equation
    Zhongyun Qin
    Shurong Sun
    Journal of Applied Mathematics and Computing, 2022, 68 : 3317 - 3325
  • [2] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [3] A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation
    Pengde Wang
    Chengming Huang
    Numerical Algorithms, 2015, 69 : 625 - 641
  • [4] The Effects of Nonlinear Noise on the Fractional Schrödinger Equation
    Xie, Jin
    Yang, Han
    Li, Dingshi
    Ming, Sen
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [5] A note on the inhomogeneous fractional nonlinear Schrödinger equation
    Saanouni, Tarek
    Shi, Qihong
    ARABIAN JOURNAL OF MATHEMATICS, 2024, 13 (02) : 389 - 407
  • [6] Another formulation of the fractional nonlinear Schrödinger equation
    Paglan, Paul Andre
    Nguenang, Jean Pierre
    EPL, 2024, 145 (02)
  • [7] Five difference schemes of nonlinear Schrödinger equation
    Dept. of Mathematics, Jinan University, Guangzhou 510632, China
    J. Inf. Comput. Sci., 2006, 2 (309-323):
  • [8] On a nonlinear fractional (p, q)-difference Schrodinger equation
    Qin, Zhongyun
    Sun, Shurong
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1685 - 1698
  • [9] Global existence for the nonlinear fractional Schrödinger equation with fractional dissipation
    Darwich M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2018, 64 (2) : 323 - 334
  • [10] On the super solitonic structures for the fractional nonlinear Schrödinger equation
    Maged A. Azzam
    H. G. Abdelwahed
    E. K. El-Shewy
    Mahmoud A. E. Abdelrahman
    Optical and Quantum Electronics, 56