Sign-changing solutions to a partially periodic nonlinear Schrödinger equation in domains with unbounded boundary

被引:0
作者
Mónica Clapp
Yéferson Fernández
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
来源
Journal of Fixed Point Theory and Applications | 2018年 / 20卷
关键词
Nonlinear Schrödinger equation; partially periodic potential; exterior domain with unbounded boundary; sign-changing solutions; Lusternik–Schnirelmann theory for noncompact groups; 35Q55 (35J20, 35B06);
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem -Δu+V∞+V(x)u=|u|p-2u,u∈H01(Ω),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u+\left( V_{\infty }+V(x)\right) u=|u|^{p-2}u,\quad u\in H_{0} ^{1}(\Omega ), \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is either RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document} or a smooth domain in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R} ^{N}$$\end{document} with unbounded boundary, N≥3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3,$$\end{document}V∞>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\infty }>0,$$\end{document}V∈C0(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in \mathcal {C} ^{0}(\mathbb {R}^{N}),$$\end{document}infRNV>-V∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\inf _{\mathbb {R}^{N}}V>-V_{\infty }$$\end{document} and 2<p<2NN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<\frac{2N}{N-2}$$\end{document}. We assume V is periodic in the first m variables, and decays exponentially to zero in the remaining ones. We also assume that Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is periodic in the first m variables and has bounded complement in the other ones. Then, assuming that Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and V are invariant under some suitable group of symmetries on the last N-m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N-m$$\end{document} coordinates of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document}, we establish existence and multiplicity of sign-changing solutions to this problem. We show that, under suitable assumptions, there is a combined effect of the number of periodic variables and the symmetries of the domain on the number of sign-changing solutions to this problem. This number is at least m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+1$$\end{document}
引用
收藏
相关论文
共 47 条
[1]  
Ackermann N(2009)Solution set splitting at low energy levels in Schrödinger equations with periodic and symmetric potential J. Differ. Equ. 246 1470-1499
[2]  
Ackermann N(2005)Multibump solutions of nonlinear periodic Schrödinger equations in a degenerate setting Commun. Contemp. Math. 7 269-298
[3]  
Weth T(1992)On “multibump” bound states for certain semilinear elliptic equations Indiana Univ. Math. J. 41 983-1026
[4]  
Alama S(1990)On a min–max procedure for the existence of a positive solution for certain scalar field equations in Rev. Mat. Iberoam. 6 1-15
[5]  
Li YY(2016)Mountain pass theorem with infinite discrete symmetry Osaka J. Math. 53 331-351
[6]  
Bahri A(1987)Positive solutions of some nonlinear elliptic problems in exterior domains Arch. Ration. Mech. Anal. 99 283-300
[7]  
Li YY(1983)Nonlinear scalar field equations. I. Existence of a ground state Arch. Ratio. Mech. Anal. 82 313-345
[8]  
Bárcenas N(2011)A note on existence of antisymmetric solutions for a class of nonlinear Schrödinger equations Z. Angew. Math. Phys. 62 67-86
[9]  
Benci V(2006)Some nonlinear elliptic problems in unbounded domains Milan J. Math. 74 47-77
[10]  
Cerami G(2007)Sign changing solutions of semilinear elliptic problems in exterior domains Calc. Var. Partial Differ. Equ. 30 353-367