Extensions of Perron–Frobenius theory

被引:0
作者
Niushan Gao
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
来源
Positivity | 2013年 / 17卷
关键词
Comparison theorems; Irreducible operators; Primary 47B65; Secondary 47A15; 47B07;
D O I
暂无
中图分类号
学科分类号
摘要
The classical Perron–Frobenius theory asserts that, for two matrices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le B \le A$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r(A)=r(B)$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} being irreducible, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=B$$\end{document}. It has been extended to infinite-dimensional Banach lattices under certain additional conditions, including that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r(A)$$\end{document} is a pole of the resolvent of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}. In this paper, we prove that the same result holds if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} is irreducible and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r(B)$$\end{document} is a pole of the resolvent for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}. We also prove some other interesting extensions of the theorem for infinite-dimensional Banach lattices.
引用
收藏
页码:965 / 977
页数:12
相关论文
共 21 条
  • [1] Abramovich Y(1992)On the spectral radius of positive operators Math. Z. 211 593-607
  • [2] Aliprantis C(2007)Some properties of essential spectra of a positive operator Positivity 11 375-386
  • [3] Burkinshaw O(2012)The irreducibility in ordered Banach algebras Positivity 16 143-176
  • [4] Alekhno EA(2012)Spectral conditions and band reducibility of operators J. Lond. Math. Soc. 86 214-234
  • [5] Alekhno EA(1987)On the peripheral spectrum of positive operators Isr. J. Math. 58 144-160
  • [6] Bernik J(1986)Irreducible compact operators Math. Z. 192 149-153
  • [7] Marcoux L(2011)More on positive commutators J. Math. Anal. Appl. 373 580-584
  • [8] Radjavi H(2008)Powers of operators dominated by strictly singular operators Quart. J. Math. 59 321-334
  • [9] Caselles V(1986)Band irreducible operators Indag. Math. 48 405-409
  • [10] de Pagter B(1959)Positive operators J. Math. Mech. 8 907-937