Existence of Extremals of Dunkl-Type Sobolev Inequality and of Stein–Weiss Inequality for Dunkl Riesz Potential

被引:0
作者
Saswata Adhikari
V. P. Anoop
Sanjay Parui
机构
[1] NISER Bhubaneswar,School of Mathematical Sciences
[2] Homi Bhabha National Institute,Department of Mathematics
[3] SRM University-AP,Department of Mathematics
[4] Indian Institute of Science,undefined
来源
Complex Analysis and Operator Theory | 2021年 / 15卷
关键词
Dunkl transform; Riesz potential; Sobolev inequality; Stein–Weiss inequality; Primary 42B10; Secondary 33C52; 35R11; 35A23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of an extremal for the Dunkl-type Sobolev inequality in the case of p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document}. Also we prove the existence of an extremal of the Stein–Weiss inequality for the Dunkl Riesz potential in the case of r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document}.
引用
收藏
相关论文
共 53 条
[1]  
Abdelkefi C(2015)Some properties of the Riesz potentials in Dunkl analysis Ricerche mat. 64 195-215
[2]  
Rachdi M(2012)Riesz transforms for Dunkl transform Ann. Math. Blaise Pascal 19 247-262
[3]  
Amri B(2019)Harmonic functions, conjugate harmonic functions and the hardy space H 1 in the rational Dunkl setting J. Fourier Anal. Appl. 20 587-606
[4]  
Sifi M(2008)Weighted inequalities and Stein–Weiss potentials Forum Math. 102 159-182
[5]  
Anker JP(1975)Inequalities in Fourier analysis Ann. Math. 15 477-494
[6]  
Dziubański J(2008)Bessel and Flett Potentials associated with Dunkl operators on Methods Appl. Anal. 277 1112-1138
[7]  
Hejna A(2019)Existence of extremal functions for the Stein-Weiss inequalities on the Heisenberg group J. Funct. Anal. 311 167-183
[8]  
Beckner W(1989)Differential-difference operators associated to reflection groups Trans. Am. Math. Soc. 5 87-106
[9]  
Beckner W(2011)The Stein–Weiss type inequalities for the B-Riesz potentials J. Math. Ineq. 75 4296-4314
[10]  
Ben Salem N(2018)Tikhonov, positive Constr. Approx. 62 737-751