The Effects of Transverse Magnetic Field and Density Variations on the Particle Energy Spectra in a Reconnecting 3D Current Sheet

被引:0
作者
Valentina V. Zharkova
Mykola Gordovskyy
机构
[1] University of Bradford,Cybernetics Department
来源
Space Science Reviews | 2005年 / 121卷
关键词
Sun: flares; Sun: acceleration; Sun: electric field; particle motion: trajectory; gyration; drifts; energy spectra;
D O I
暂无
中图分类号
学科分类号
摘要
Electron and proton acceleration by a super-Dreicer electric field is further investigated in a non-neutral reconnecting current sheet (RCS) with a variable plasma density. The tangential Bz and transverse magnetic field components Bx are assumed to vary with the distances x and z from the X nullpoint linearly and exponentially, respectively; the longitudinal component (a ‘guiding field’) is accepted constant. Particles are found to gain a bulk of their energy in a thin region close to the X nullpoint where the RCS density increases with z exponentially with the index λ and the tangential magnetic field Bx also increases with z exponentially with the index α. For the RCS with a constant density (λ = 0), the variations of the tangential magnetic field lead to particle power-law energy spectra with the spectral indices γ1 being dependent on the exponent α as: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma_1 = 1 + \frac{1}{2\alpha}$$\end{document} for protons and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma_1 = 1+ \frac{1}{\alpha}$$\end{document} for electrons in a strong guiding field (β > 10−2) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma_1 =\frac {1} 2 (1 +\frac{1}{\alpha})$$\end{document} for electrons in a moderate or weak guiding field (β > 10−4). For the RCS with an exponential density increase in the vicinity of the X nullpoint (λ≥ 0) there is a further increase of the resulting spectral indices γ that depends on the density exponent index λ as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma = \gamma_1 +\frac{\lambda}{2\alpha}$$\end{document} for protons and for electrons in weaker guiding fields and as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma = \gamma_1 + \frac{\lambda}{\alpha}$$\end{document} for electrons in stronger guiding fields. These dependencies can explain a wide variety (1.5–10) of particle spectral indices observed in solar flares by the variations of a magnetic field topology and physical conditions in a reconnecting region. This can be used as a diagnostic tool for the investigation of the RCS dynamics from the accelerated particle spectra found from hard X-ray and microwave emission.
引用
收藏
页码:165 / 188
页数:23
相关论文
共 63 条
[1]  
Aurass H.(1999)undefined Solar Phys. 190 267-undefined
[2]  
Vrsnak B.(1995)undefined ApJ 455 733-undefined
[3]  
Hofmann A.(1994)undefined J. Geophys. Res. 99 5977-undefined
[4]  
Rudzjak V.(1998)undefined J. Geophys. Res. 103 4597-undefined
[5]  
Bromund K. R.(1995)undefined ApJ Lett. 455L 197-undefined
[6]  
McTiernan J. M.(2005)undefined A&A 436 1103-undefined
[7]  
Kane S. R.(2002)undefined ApJ 566 512-undefined
[8]  
Chapman S. C.(2000)undefined MNRAS 317 973-undefined
[9]  
Chapman S. C.(1993)undefined Solar Phys 146 127-undefined
[10]  
Rowland G.(1996)undefined ApJ 462 997-undefined