Finite element method resolution of non-linear Helmholtz equation

被引:0
作者
S. Selleri
L. Vincetti
A. Cucinotta
机构
[1] Università degli Studi di Parma,Dipartimento di Ingegneria dell'Informazione
来源
Optical and Quantum Electronics | 1998年 / 30卷
关键词
Soliton; Finite Element Method; Helmholtz Equation; Beam Propagation; Adaptive Mesh;
D O I
暂无
中图分类号
学科分类号
摘要
A non-paraxial beam propagation method for non-linear media is presented. It directly implements the non-linear Helmholtz equation without introducing the slowing varying envelope approximation. The finite element method has been used to describe the field and the medium characteristics on the transverse cross-section as well as along the longitudinal direction. The finite element capabilities as, for example, the non-uniform mesh distribution, the use of adaptive mesh techniques and the high sparsity of the system matrices, allow one to obtain a fast, versatile and accurate tool for beam propagation analysis. Examples of spatial soliton evolution describe phenomena not predicted in the frame of the slowing varying envelope approximation.
引用
收藏
页码:457 / 465
页数:8
相关论文
共 53 条
[1]  
Zakharov V. E.(1971)undefined Sov. Phys. JEPT 33 77-undefined
[2]  
Sobolev V. V.(1990)undefined J. Opt. Soc. Am. B 7 1772-undefined
[3]  
Synach V. S.(1997)undefined Photonic Technol. Lett. 9 351-undefined
[4]  
Hayata K.(1993)undefined Opt. Lett. 18 411-undefined
[5]  
Misawa A.(1994)undefined IEEE Photonic Tech. Lett. 6 1251-undefined
[6]  
Koshiba M.(1997)undefined Opt. Lett. 22 778-undefined
[7]  
Hernandez-Figueroa H. E.(1992)undefined Opt. Lett. 17 1426-undefined
[8]  
Brandao M. L.(1997)undefined Electron. Lett. 33 1461-undefined
[9]  
Akhmediev N.(1994)undefined Electron. Lett. 30 352-undefined
[10]  
Ankiewicz A.(1992)undefined J. Opt. Soc. Am. A 9 142-undefined