One-weight and two-weight ℤ2ℤ2[u,v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{2}\mathbb {Z}_{2}[u,v]$\end{document}-additive codes

被引:0
作者
Minjia Shi
Chenchen Wang
Rongsheng Wu
Yu Hu
Yaoqiang Chang
机构
[1] Anhui University,Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematics
关键词
Additive codes; One-weight codes; Two-weight codes; MacWilliams identity; 94B05; 94B15;
D O I
10.1007/s12095-019-00391-5
中图分类号
学科分类号
摘要
In this paper, a class of additive codes which is referred to as ℤ2ℤ2[u,v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{2}\mathbb {Z}_{2}[u,v]$\end{document}-additive codes is introduced. This is a generalization towards another direction of recently introduced ℤ2ℤ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{2}\mathbb {Z}_{4}$\end{document} codes (Doughterty et al., Appl. Algebra Eng. Commun. Comput. 27(2), 123–138, 7). A MacWilliams-type identity that relates the weight enumerator of a code with its dual is proved. Furthermore, the structure and possible weights for all one-weight and two-weight ℤ2ℤ2[u,v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{2}\mathbb {Z}_{2}[u,v]$\end{document}-additive codes are described. Additionally, we also construct some one-weight and two-weight ℤ2ℤ2[u,v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{2}\mathbb {Z}_{2}[u,v]$\end{document}-additive codes to illustrate our obtained results.
引用
收藏
页码:443 / 454
页数:11
相关论文
共 35 条
[1]  
Bahattin Y(2010)Linear codes over $\mathbb {F}_{2}+ u\mathbb {F}_{2}+ v\mathbb {F}_{2}+ uv\mathbb {F}_{2}$F2 + uF2 + vF2 + uvF2 Des. Codes Crypt. 54 61-81
[2]  
Karadeniz S(1984)Every equidistant linear code is a sequence of dual Hamming codes Ars Combin. 18 181-186
[3]  
Bonisoli A(2008)Ring geometries, two-weight codes, and strongly regular graphs Des. Codes Crypt. 48 1-16
[4]  
Byrne E(1986)The geometry of two-weight codes Bull. Lond. Math. Soc. 18 97-122
[5]  
Greferath M(1973)An algebraic approach to the association schemes of coding theory Philips Res. Rep. Suppl. 10 1-97
[6]  
Honold T(2016)One weight $\mathbb {Z}_{2}\mathbb {Z}_{4}$ℤ2ℤ4 additive codes Appl. Algebra Eng. Commun. Comput. 27 123-138
[7]  
Calderbank R(2015)An identity between the m-spotty Rosenbloom-Tsfasman weight enumerators over finite commutative Frobenius rings Bull. Korean Math. Soc. 52 809-823
[8]  
Kantor WM(2015)One-homogeneous weight codes over Finite chain rings Bull. Korean Math 52 2011-2023
[9]  
Delsarte P(2013)Optimal p-ary codes from one-weight linear codes over $\mathbb {Z}_{p^{m}}$ℤpm Chin. J. Electron. 22 799-802
[10]  
Doughterty ST(2016)Construction of two-Lee weight codes over $\mathbb {F}_{p}+v\mathbb {F}_{p}+v^{2}\mathbb {F}_{p}$Fp + vFp + v2Fp Int. J. Comput. Math. 93 415-424