Fixed points of mappings with a contractive iterate at a point in partial metric spaces

被引:0
作者
Dejan Ilić
Vladimir Pavlović
Vladimir Rakočević
机构
[1] Faculty of Sciences and Mathematics,Department of Mathematics
[2] University of Niš,undefined
来源
Fixed Point Theory and Applications | / 2013卷
关键词
fixed point; partial metric space; contractive iterate at a point;
D O I
暂无
中图分类号
学科分类号
摘要
In 1994, Matthews introduced and studied the concept of partial metric space and obtained a Banach-type fixed point theorem on complete partial metric spaces. In this paper we study fixed point results of new mappings with a contractive iterate at a point in partial metric spaces. Our results generalize and unify some results of Sehgal, Guseman and Ćirić for mappings with a generalized contractive iterate at a point to partial metric spaces. We give some generalized versions of the fixed point theorem of Matthews. The theory is illustrated by some examples.
引用
收藏
相关论文
共 59 条
[1]  
Banach S(1922)Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales Fundam. Math 3 133-181
[2]  
Ćirić L(1983)On Sehgal’s maps with a contractive iterate at a point Publ. Inst. Math 33 59-62
[3]  
Guseman LF(1970)Fixed point theorems for mappings with a contractive iterate at a point Proc. Am. Math. Soc 26 615-618
[4]  
Sehgal VM(1969)A fixed point theorem for mappings with a contractive iterate Proc. Am. Math. Soc 23 631-634
[5]  
Pavlović M(2010)Abstract metric spaces and Sehgal-Guseman-type theorems Comput. Math. Appl 60 865-872
[6]  
Radenović S(1995)An extensional treatment of lazy data flow deadlock Theor. Comput. Sci 151 195-205
[7]  
Radojević S(2009)Partial metric spaces Am. Math. Mon 116 708-718
[8]  
Matthews SG(2001)Distance and measurement in domain theory Electron. Notes Theor. Comput. Sci 40 448-462
[9]  
Bukatin M(2005)Partial metric monoids and semivaluation spaces Topol. Appl 153 948-962
[10]  
Kopperman R(2009)A quantitative computational model for complete partial metric spaces via formal balls Math. Struct. Comput. Sci 19 541-563