Universal Approximants of the Riemann Zeta-Function

被引:0
作者
Markus Nieβ
机构
[1] Katholische Universität Eichstätt-Ingolstadt,Mathematisch
关键词
Universality; tangential approximation; Riemann zeta-function; 11M06; 30E10;
D O I
10.1007/BF03321719
中图分类号
学科分类号
摘要
The Riemann zeta-function ζ(z) has the following well-known properties, cf. the excellent survey of Steuding [10]: it is holomorphic in the complex plane except for a simple pole at z = 1 with residue 1the symmetry relation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\zeta(z) = \overline {\zeta(\bar z)}$\end{document} holds for z ≠ 1the functional equation ζ(z)Γ(z/2)π−z/2 = ζ(1 − z)Γ((1 − z)/2)π − (1−z)/2 holdsit has a universality property due to Voronin [11]. The aim of this paper is to show that arbitrarily close approximations of the Riemann zeta-function which satisfy (i)–(iii) may have a different universal property. Consequently, these approximations do not satisfy the Riemann hypothesis. This extends a result due to Gauthier and Zeron [6].
引用
收藏
页码:145 / 159
页数:14
相关论文
共 50 条
  • [31] Dirichlet series induced by the Riemann zeta-function
    Tanaka, Jun-Ichi
    STUDIA MATHEMATICA, 2008, 187 (02) : 157 - 184
  • [32] On the distribution of values of the argument of the Riemann zeta-function
    Ivic, Aleksandar P.
    Korolev, Maxim A.
    JOURNAL OF NUMBER THEORY, 2019, 200 : 96 - 131
  • [33] On the Approximation by Mellin Transform of the Riemann Zeta-Function
    Korolev, Maxim
    Laurincikas, Antanas
    AXIOMS, 2023, 12 (06)
  • [34] Discrete Schwartz distributions and the Riemann zeta-function
    Nicolae, Florin
    Verjovsky, Alberto
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (02): : 211 - 221
  • [35] On gaps between zeros of the Riemann zeta-function
    Feng, Shaoji
    Wu, Xiaosheng
    JOURNAL OF NUMBER THEORY, 2012, 132 (07) : 1385 - 1397
  • [36] AN APPLICATION OF GENERALIZED MOLLIFIERS TO THE RIEMANN ZETA-FUNCTION
    Sono, Keiju
    KYUSHU JOURNAL OF MATHEMATICS, 2018, 72 (01) : 35 - 69
  • [37] BANDLIMITED APPROXIMATIONS AND ESTIMATES FOR THE RIEMANN ZETA-FUNCTION
    Carneiro, Emanuel
    Chirre, Andres
    Milinovich, Micah B.
    PUBLICACIONS MATEMATIQUES, 2019, 63 (02) : 601 - 661
  • [38] On integral representations for powers of the Riemann zeta-function
    Ivic, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 52 (3-4): : 469 - 495
  • [39] On the divisor function and the Riemann zeta-function in short intervals
    Ivic, Aleksandar
    RAMANUJAN JOURNAL, 2009, 19 (02) : 207 - 224
  • [40] A remark on negative moments of the Riemann zeta-function
    Laurinčikas A.
    Lithuanian Mathematical Journal, 2000, 40 (1) : 23 - 28