Universal Approximants of the Riemann Zeta-Function

被引:0
|
作者
Markus Nieβ
机构
[1] Katholische Universität Eichstätt-Ingolstadt,Mathematisch
关键词
Universality; tangential approximation; Riemann zeta-function; 11M06; 30E10;
D O I
10.1007/BF03321719
中图分类号
学科分类号
摘要
The Riemann zeta-function ζ(z) has the following well-known properties, cf. the excellent survey of Steuding [10]: it is holomorphic in the complex plane except for a simple pole at z = 1 with residue 1the symmetry relation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\zeta(z) = \overline {\zeta(\bar z)}$\end{document} holds for z ≠ 1the functional equation ζ(z)Γ(z/2)π−z/2 = ζ(1 − z)Γ((1 − z)/2)π − (1−z)/2 holdsit has a universality property due to Voronin [11]. The aim of this paper is to show that arbitrarily close approximations of the Riemann zeta-function which satisfy (i)–(iii) may have a different universal property. Consequently, these approximations do not satisfy the Riemann hypothesis. This extends a result due to Gauthier and Zeron [6].
引用
收藏
页码:145 / 159
页数:14
相关论文
共 50 条